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1. Introduction 
Securitisation exposures1 depend non-linearly on the performance of the underlying loan pools against which 
they are typically secured. The non-linear dependence means that return volatility may change significantly 
over time as the effective level of subordination changes. Apparent regime changes in the riskiness of returns 
are simply the result of the non-linear dependence of tranche values on underlying pools. 
 
Effective and robust risk management of securitisation portfolios should take account of such non-linearity. 
This note explains how to analyse risk in a securitisation portfolio using a ‘look through’ approach. This 
approach involves modelling the cash flow waterfall of securitisation deals constructed on top of a stochastic 
model of pool asset performance. The model we describe is implemented using Monte Carlo methods and can 
represent realistically complex cash flow waterfalls in a rigorous fashion.  
 
We implement this Monte Carlo approach within a flexible portfolio modelling software called RC-Capital 
Model. The software supports analysis of multi-currency portfolios comprising bonds, equities and derivatives 
of various types. Hence, the contribution of securitisation exposures to wider portfolios of instruments may be 
accurately computed.  
 
To illustrate the approach, we analyse a portfolio of Spanish and Portuguese Small and Medium Enterprise 
(SME) deals. We calculate portfolio risk statistics such as Value at Risk (VaR) and Expected Shortfall (ES) and 
marginal VaRs (denoted MVaRs) for individual securitisation exposures. We study features of the securitisation 
exposure that increase MVaRs for individual tranches. We find that MVaRs are strongly positively associated 
with low attachment points, long Weighted Average Life (WAL) and low ratings. 
 
We compare the marginal VaRs generated using the Monte Carlo model with those implied by a dynamic 
version of the Arbitrage Free Approach (AFA) developed in Duponcheele, Perraudin and Totouom-Tangho 
(2013). This latter model is a stylised but rigorous model for calculating the capital for individual securitisation 
exposures. It is employed by the authors to shed light on appropriate levels of regulatory capital.  
 
We also compare numerically obtained Monte Carlo MVaRs with capital figures implied by regulatory formulae 
contained in BCBS (2014), namely the SEC-IRBA and SEC-SA approaches. These have been calibrated by the 
authorities using an ad hoc formula (the Simplified Supervisory Formula Approach (SSFA)) as an 
approximation to a model reportedly similar to the AFA. Again, we find high associations with R-squared 
statistics for a regression of the Monte Carlo MVaRs on the regulatory capital calculations of 88%. 
 
These comparisons underline the robust nature of the numerical calculations involved in the Monte Carlo 
MVaR calculations. The AFA and regulatory formulae approaches presume that a single risk factor drives the 
bank balance sheet while another drives each individual securitisation pool. Such assumptions are not 
appropriate in the context of analysing risk in a portfolio of securitisations from different geographical regions 

 
1 This note was prepared by Jozsef Kutas and William Perraudin. 
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and pool asset classes. The exercises reported here involve a portfolio limited to a single pool asset class (SME 
loans) and all originated in a single geographical region (Spain and Portugal). In this case, the number of 
underlying risk factors is small and one may regard the Monte Carlo and analytical approaches (the latter or 
which assumes a single common risk factor) as comparable.  
 
Note that even when the Monte Carlo model is applied assuming few risk factors, it yields results that differ 
somewhat from the AFA (and the regulatory capital models) because in the Monte Carlo model a more realistic 
representation of cash flow is allowed for. To investigate how this affects the results, we regress the differences 
in MVaRs from the numerical model and the AFA on a set of capital drivers and find that for higher deal 
duration and attachment points, the numerical MVaRs are lower than the AFA-implied MVaRs. This may 
reflect the fact that in actual deals (as described more accurately in the numerical model) excess spread 
accumulates and protects senior tranches against defaults. 
 
The structure of this note is as follows. Section 2 describes the securitisation portfolio we examine, setting out 
the assumptions adopted in calibrating the model. Sections 3 and 4 set out the methodology employed. Section 
5 presents the results of our analysis. We first look at the performance of the securitisations in isolation, and 
then examine how the marginal VaRs of the securitisation exposures vary according to various exposure 
characteristics. Section 6 summarises the AFA capital model for securitisation tranches, and compares the risk 
statistics it implies with those supplied by the Monte Carlo model. It also compares results with regulatory 
capital calculations. Section 7 concludes. 

2. Description of the securitisation portfolio 
This paper describes a Monte Carlo approach to modelling capital on securitisation portfolios and then applies 
it to a portfolio of Spanish and Portuguese securitisations. The portfolio employed in the illustrative 
calculations consists of 72 tranches from 25 SME-loan backed securitisations. 24 of the securitisations are 
Spanish, and 1 is Portuguese. The total value of the tranches is EUR 4.255 billion, and the total amount held in 
reserve is EUR 650 million. 
 
Figure 1 shows the breakdown of the exposures by rating. As one may observe, the portfolio contains very few 
AAA-rated tranches. Most tranches have ratings of A or BBB but there are substantial numbers of exposures 
rated BB, B, CCC and even default. Interpretation of ratings is, in this case, complicated by the fact that the 
ratings agencies apply sovereign rating caps for Spain and Portugal. If the deals involved were located in other 
countries, the tranches we study would no doubt bear distinctly higher ratings. 
 
Figure 2 shows the portfolio breakdown by Weighted Average Life (WAL). The WAL for most tranches is less 
than 4 years. Three quarters of tranches have WALs less than 6 years. Perhaps the most representative tranche 
in the portfolio has a par value of EUR 50 million, a rating of BBB, and a maturity of 3 years.  
 

Figure 1: Tranches by Rating Figure 2: Tranches by Weighted Average Life 

 
  

3. Modelling loan losses 
In this and the next section, we describe the methodology we employ to calculate risk statistics for portfolios of 
securitisation tranches. The methodology involves modelling the stochastic behaviour of loan pools and then 
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building a representation of the cash flow waterfalls on top. To explain the methodology, we describe in this 
section how loan pools are modelled (and how we calibrate their distributions). In the next section, we describe 
the approach we take in modelling cash-flow waterfalls. 
 
To model loan pools, we simulate the loss rate, 𝜃𝑡, through time of a homogeneous pool of underlying loans, 𝑡. 

The methodology employed may be described as follows. Define the transformed loss rate  �̃�𝑡 = Φ
−1(𝜃𝑡) o a 

homogeneous loan pool. Here, Φ−1(∙) is the inverse of the standard Gaussian distribution function. Lamb and 

Perraudin (2008) show that, under suitable assumptions, the transformed loss rate, �̃�𝑡, follows the Gaussian 
autoregressive process: 

 
�̃�𝑡+1 = √𝛽�̃�𝑡  +  

1 − √𝛽

√1 − 𝜌𝑃𝑜𝑜𝑙
Φ−1(𝑞𝑡) −  √𝜌

√1 − 𝛽

√1 − 𝜌𝑃𝑜𝑜𝑙
𝜀𝑡 (1)  

 
Here, 𝑞𝑡  is an unconditional probability of default of individual loans (which may vary over time), 𝛽 and 𝜌𝑃𝑜𝑜𝑙  
are mean reversion and correlation parameters, and 𝜀𝑡 is a standard Gaussian shock equal to 
 

 𝜀𝑡 = −√1 − 𝜂
2 𝑓𝑡 +  𝜂 𝜁𝑡  (2)  

 
The random variables 𝑓𝑡 and 𝜁𝑡  are standard Gaussian shocks, with 𝑓𝑡 being a factor specific to the country and 
industry of the securitisation pool loans, while 𝜁𝑡  is an idiosyncratic shock specific to the securitisation in 
question. 𝜂 is a parameter describing the weight of the idiosyncratic factor. 
 
To calibrate these processes for each securitisation asset pool, we take the following approach. Within the RC-
Capital Model software, users supply parameters for each securitisation. These parameters include an initial 
loss rate, 𝜃0, and the 𝛽, 𝜌𝑃𝑜𝑜𝑙  and 𝜂 parameters. Users also input cumulative default rates and spreads, for 
maturities of 0 to 30 years which are used to calculate the unconditional pool probability of default at time 𝑡. 
The factor shock 𝑓𝑡 is assumed to equal a weighted sum of sector and country factors with user supplied 
weights. 
 
Lamb and Perraudin (2008) provide an estimate of 0.91 for the value of 𝛽 for corporate and industrial loans. 
This is based on aggregate data. Autocorrelation for individual securitisation pool loss rates is probably lower so 
we opt for a value of 0.8. The cumulative default rates used are those provided in Table 24 in Vazza et al. (2014). 
These go up to a time horizon of 15 years which is sufficient given the maturities of the exposures we study here. 
The factor shock is calculated based on a single country factor. 
 
We choose the parameters 𝜌𝑃𝑜𝑜𝑙  and 𝜂 based on values suggested in Duponcheele et al. (2013). In this paper the 
authors consider a granular securitisation pool, and suppose that a default for the 𝑖th loan depends on the value 
of a latent variable, 𝑍𝑖, which is assumed to satisfy the factor structure 
 

 𝑍𝑖 = √𝜌𝑃𝑜𝑜𝑙𝑌𝑆 + √1 − 𝜌𝑃𝑜𝑜𝑙𝜀𝑖 (3)  

 
Here, 𝑌𝑆 and 𝜀𝑖 are standard Gaussian shocks, with 𝑌𝑆 being a factor common to all exposures in the pool. 𝑌𝑆, in 
turn, exhibits the following factor structure: 
 

 
𝑌𝑆 = 

√𝜌

√𝜌𝑃𝑜𝑜𝑙
𝑌𝐵 + 

√1 − 𝜌√𝜌∗

√𝜌𝑃𝑜𝑜𝑙
𝑋 (4)  

 
Here, 𝑌𝐵 and 𝑋 are standard Gaussian shocks. 𝑌𝐵 is the factor common to all the exposures in the bank portfolio 
and 𝑋 is a factor orthogonal to 𝑌𝐵. In order that 𝑌𝑆 be standard Gaussian, we set 𝜌𝑃𝑜𝑜𝑙 =  𝜌 + (1 − 𝜌)𝜌

∗. The 
authors recommend using the values 𝜌 = 0.2 and 𝜌∗ = 0.1, giving a value of 0.28 for 𝜌𝑃𝑜𝑜𝑙 . 𝜂 is analogous to the 
coefficient of 𝑋 in (4). This is approximately equal to 0.5. 
 
Once loss rates 𝜃1, … , 𝜃𝑇  for the loan pool have been calculated, the price 𝑉𝑡 of the pool at time 𝑡 may be 
calculated using the formula 
 

 

𝑉𝑡 = ∑𝑐 exp(−𝑟𝑡,𝑡+𝑖𝑖) (∏(1 − 𝜃𝑗)

𝑖

𝑗=1

) + 𝑄 exp(−𝑟𝑡,𝑡+𝑇𝑇)(∏(1 − 𝜃𝑗)

𝑇

𝑗=1

)

𝑇

𝑖=1

 (5)  
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Here, 𝑇 is the time to maturity, 𝑐 is the coupon rate, 𝑄 is the principal, and 𝑟𝑡,𝑡+𝑖 is the 𝑖-period interest from 

time 𝑡.  

4. Modelling cash flow waterfalls 
Having constructed a model of loan pools, one may construct a representation of the securitisation cash-flow 
waterfalls.  Cash payments to the holders of a securitisation tranche are determined by a set of rules collectively 
referred to as a cash-flow waterfall. These rules describe how income on the loan pool including coupon and 
principal repayments and recoveries in the event of defaults are allocated to the holders of tranches of notes or 
bonds enjoying different levels of seniority. Contractual coupon and principal payments to the most senior 
tranches are paid first. Remaining monies are used to meet contractual liabilities to other tranches in order of 
seniority.  
 
Given a set of cash flows and rules on the rights of different tranche holders, one may straightforwardly allocate 
payments among the various tranches. Hence, if one simulates pool cash flows using the approach described in 
the last section, by implementing the cash flow waterfall rules numerically, one may also simulate the cash 
flows to the tranche holders.  
 
If one wishes to calculate risk statistics (like Value at Risk (VaR) or Expected Shortfall (ES)) for a portfolio of 
securitisation tranches over a holding period that exceeds the final maturity of the longest dated securitisation, 
then simulating the loan exposures and then using the cash flow waterfall rules to simulate the tranche cash 
flows is sufficient to estimate, via Monte Carlo methods, the distribution of tranche payoffs. From this risk 
statistics like VaRs and risk return trade-offs may be estimated. 
 
More commonly, however, one wishes to calculate VaRs using a holding period shorter than the maturities of 
the securitisations in question. In this case, one may simulate cash-flows up to the investment horizon and add 
these cash-flows (discounted up) to the prices of the tranches at the VaR horizon. But, to do this requires that 
one be able to value the tranche at the horizon in question, which is generally difficult except using a numerical 
routine like an embedded Monte Carlo. Such embedded or nested Monte Carlo exercises are numerically 
infeasible since they involve a very substantial computational cost. 
 
To avoid this difficulty of implementing nested Monte Carlos, we use a conditional regression approach similar 
to that used by Longstaff and Schwartz in the context of American option valuation. To be more precise, to 
calculate risk statistics for a securitisation with maturity 𝑇 and 𝐽 tranches, RC-Capital Model follows the 
following steps: 
 

1. A grid of plausible transformed loss rates at the VaR horizon, 𝑡1, is constructed. For each grid node, loss 
rates are simulated forward until maturity, and this process is repeated 𝑁 times. 
 

2. Let 𝑐𝑗,𝑡
(𝑛)

 be the cash flow at time 𝑡, on the 𝑗th tranche and on the 𝑛th simulation. The summed discounted 

cash flow at 𝑡1, on tranche 𝑗 and simulation 𝑚, is denoted 𝐷𝐶𝐹𝑡,𝑗,𝑡1
(𝑛)

, and given by the formula 

 
 

𝐷𝐶𝐹𝑡,𝑗,𝑡1
(𝑛) = ∑ 𝑐𝑗,𝑖

(𝑛)𝑃𝑡,𝑡1,𝑖

𝑇

𝑖=𝑡1+1

 (6)  

 
Here, 𝑃𝑡,𝑡1,𝑖 is the forward discount factor at time 𝑡 for discounting a cash flow at time 𝑖 back to time 𝑡1.  

 

3. For 𝑠 = 1,… , 𝑆 a statistic ℎ𝑡1,𝑠
(𝑛)

 is defined for the loss rate history up to 𝑡1 for simulation 𝑚: 

 
 ℎ𝑡1,𝑠

(𝑛) = 𝐻𝑡1,𝑠((𝜃𝑡: 𝑡 = 1,… , 𝑡1)) (7)  

 

By regressing the summed discounted cash flows 𝐷𝐶𝐹𝑡,𝑗,𝑡1
(𝑛)

 on the statistics ℎ𝑡1,𝑠
(𝑛)

, a pricing function 𝐹 is 

obtained, which assigns to every loss rate history up to 𝑡1 cash flows to each of the tranches: 
 

 (𝑐𝑗,𝑡: 𝑗 = 1,… , 𝐽, 𝑡 = 1,… , 𝑇) = 𝐹((𝜃𝑡: 𝑡 = 1,… , 𝑡1)) (8)  

 
4. A further Monte Carlo is performed to calculate risk statistics at 𝑡1 using the pricing function 𝐹. 
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We use 2,000,000 replications for the latter Monte Carlo. In modelling the portfolio, we assume that the 
underlying loans are paid off at a constant rate until maturity. For each tranche we have an estimate of the 
weighted average life (WAL), calculated assuming a constant prepayment rate, and taking into account the 
payment structure of the securitisation. We choose a value for the maturity of the underlying loans that results 
in a WAL equal to the sum of the WALs of the tranches, weighted by their value as a fraction of the value of the 
entire deal. Given the linear amortisation schedule, the maturity should be set to twice this weighted sum.  We 
obtain yield data for the underlying loans from Bloomberg. 

5. Results 
In this section, we present an analysis of our example SME-loan-backed securitisation portfolio implemented 
using RC-Capital Model. Figure 3 shows the task monitor window of RC-Capital Model when the simulation is 
performed. Throughout this section, unless otherwise specified, all VaRs are calculated over a horizon of one 
year and at a 99.9% confidence level, and are presented as a fraction of the current value. Multiple confidence 
intervals can be specified in the software, as shown in Figure 4, along with other model options. 
 

Figure 3: Capital Model Task Monitor 

 
 

Figure 4: Model Options for VaR/ES 

 
 
Figure 5 shows a histogram of the total value of the securitisation portfolio at the one year horizon. Note that 
the distribution is in monetary terms and not in returns. Its left skewed appearance reflects the significant 
influence of downside credit risk.  
 
A summary of the results is presented in Figure 6. As well as the left skew referred to above, the distribution 
exhibits slight positive excess kurtosis. The 99.9% VaR as a fraction of the expected forward value of the 
portfolio is 8.20%, just slightly higher than the Basel I capital percentage of 8%. The Expected Shortfall (ES) is, 
of course, higher but not very substantially so. 
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Figure 5: Histogram of Portfolio Values 

 
Figure 6: Summary of Results for Monte Carlo Simulation 

 
Note: The table presents summary statistics for the portfolio, calculated using Monte Carlos. 
All figures are given in Euros and are discounted to the present. 
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We now consider risk statistics for individual exposures considered as part of the wider portfolio. Figure 7 
shows the 20 exposures for which the marginal VaRs are largest. The largest MVaR is €84 million, more than 
20% of the total portfolio VaR. The top two exposures are both from BBVA-originated deals, and were assigned 
credit ratings of B- and BBB respectively. After the top ten MVaRs, the risk on individual exposure is quite low. 
 
Figure 7: The 20 largest one year marginal VaRs 

 

6. Comparison with AFA 
In this section, we benchmark the marginal VaRs obtained from RC-Capital Model to those calculated using the 
Arbitrage Free Approach (AFA) described in Duponcheele et al. (2013). We begin by giving a brief summary of 
the AFA. The latter is a stylised analytical measure of the marginal VaR of a securitisation exposure suitable for 
use within a regulatory capital framework.  
 
Here, we employ the AFA as a benchmark for the more realistic (less stylised) approach possible if one employs 
our Monte Carlo methodology. Specifically, the Monte Carlo approach permits one to use a realistically 
complicated representation of the cash flows on pool assets and securitisation tranches. It also permits one, if 
one wishes, to use a more general factor and hence correlation structure for the underlying risks.  
 
Note that the scope to employ a more general factor structure is slightly less important when one is examining a 
portfolio comprising a single asset class (here, SME-loan-backed deals) within effectively a single geographical 
region (here Spain and Portugal). With more general portfolios (for example, comprising Spanish and UK 
deals), a richer correlation structure would be appropriate. 
 
We begin by defining the parameters used in the calculation of the AFA. We consider a securitisation tranche 
with attachment and detachment points 𝐴 and 𝐷. Let 𝑀 be the maturity of the securitisation, and let 𝑝𝑑𝑀 and 
𝐿𝐺𝐷 be the 𝑀-year probability of default and the loss given default on the pool assets. We recall from Section 3 
that 𝜌 = 0.2, 𝜌∗ = 0.1 and 𝜌𝑃𝑜𝑜𝑙 = 0.28. The expected loss for the tranche may be calculated using equations (9)-
(13). 
 

 
𝐸𝐿(𝐴, 𝐷) =  

(1 − 𝐴) × 𝐸𝐿𝑆𝑒𝑛𝑖𝑜𝑟(𝐴) − (1 − 𝐷) × 𝐸𝐿𝑆𝑒𝑛𝑖𝑜𝑟(𝐷)

𝐷 − 𝐴
 (9)  

 
 

𝐸𝐿𝑆𝑒𝑛𝑖𝑜𝑟(𝑋) =  
𝐿𝐺𝐷 × 𝑁2 − 𝑋 × 𝑃𝐷𝑇𝑟𝑎𝑛𝑐ℎ𝑒(𝑋)

1 − 𝑋
 (10)  

 
 𝑁2 = 𝑁2(𝑁

−1(𝑃𝐷𝑀), 𝑁
−1(𝑃𝐷𝑇𝑟𝑎𝑛𝑐ℎ𝑒(𝑋)), √𝜌𝑃𝑜𝑜𝑙) (11)  

 
 

𝑃𝐷𝑇𝑟𝑎𝑛𝑐ℎ𝑒(𝑋) = 𝑁(
𝑁−1(𝑃𝐷𝑀) − 𝑁

−1 (
𝑋
𝐿𝐺𝐷

)√1 − 𝜌𝑃𝑜𝑜𝑙

√𝜌𝑃𝑜𝑜𝑙
) (12)  

 
 

𝑃𝐷𝑀 = 𝑁(𝑁
−1(𝑝𝑑𝑀) +

(𝑀 − 1)𝛾

√𝑀
) (13)  
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𝛾 is a risk-premium parameter, which, according to Bohn (2000), should be assigned a value between 0.3 and 
0.5. We use a value of 0.3 in our calculations. 𝑁 is the normal cumulative distribution function and 𝑁2(, , 𝜌) are 
is the bivariate normal cumulative distribution functions, with correlation 𝜌. 
 
To calculate the marginal VaR using the AFA, we require the stressed 𝑀-year probability of default on the pool 
assets 𝑃𝐷𝛼,𝑀. Duponcheele et al. (2013) provide two ways of calculating 𝑃𝐷𝛼,𝑀. According to the first method, 

𝑃𝐷𝛼,𝑀 is calculated using the formula 

 
 

𝑃𝐷𝛼,𝑀 = 𝑁

(

 
𝑁−1(𝑃𝐷𝑀) − √

𝜌
𝑀
N−1(α)

√1 −
𝜌
𝑀 )

  (14)  

 
Here, 𝛼 is the confidence interval, taken here to be 0.001. This is the approach followed here. 
 
In the second method, 𝑃𝐷𝛼,𝑀 is chosen so as to ensure that the total capital requirement for all the tranches of a 

securitisation is equal to the IRBA capital requirement for the underlying loans, 𝐾𝐼𝑅𝐵 (see Basel Committee on 
Banking Supervision (2006)). This implies that 
 

 
𝑃𝐷𝛼,𝑀 = 

𝐾𝐼𝑅𝐵
𝐿𝐺𝐷

+ 𝑃𝐷𝑀 (15)  

 
To obtain capital estimates, we replace 𝑃𝐷𝑀  by 𝑃𝐷𝛼,𝑀 and replace 𝜌𝑃𝑜𝑜𝑙  with 𝜌𝑀

∗ , where 𝜌𝑀
∗  is given by the 

formula 
 

 
𝜌𝑀
∗ = 

(1 − 𝜌)𝜌∗ + (𝑀 − 1)𝜌𝑃𝑜𝑜𝑙
(1 − 𝜌) + (𝑀 − 1)

 (16)  

 
We, thereby, obtain 𝑀𝑉𝑎𝑅(𝐴, 𝐷) instead of 𝐸𝐿(𝐴, 𝐷). For the 𝑀-year probability of default 𝑝𝑑𝑀, we use the 
cumulative default rates provided in Table 24 in Vazza et al. (2014) and linear interpolation.  
 
Figure 8 shows how the marginal VaRs calculated using the Monte Carlo approach compare to the marginal 
VaRs calculated using the AFA. Here 𝑃𝐷𝛼,𝑀 is calculated using (14). The linear regression lines and 𝑅2’s are 

shown. The high 𝑅2 may partly be attributed to clustering, with low risk and high risk tranches being assigned 
MVaRs close to 0 and 1 respectively, regardless of the calculation method, but with the two MVaR calculations 
differing noticeably for tranches that fall into neither of the above groups. 
 
Figure 9 shows a similar comparison, with 𝑃𝐷𝛼,𝑀 calculated using (15). The two sets of results are similar, with 

(15) AFA producing slightly higher MVaRs. 
 

Figure 8: AFA marginal VaR versus Monte Carlo MVaR 
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Figure 9: AFA marginal VaR with IRBA input versus Monte Carlo MVaR 

 
 

Table 1 presents the results of regressions of differences between the AFA MVaRs and the Monte Carlo MVaRs 
(that appear in Figure 9) on different exposure characteristics. The differences depend negatively on the 
duration of the securitisation and positively on the tranche attachment point. This shows that the AFA over-
estimates the contribution to risk of duration and under-estimates the effect of attachment point compared to 
the more realistic Monte Carlo model. The default profile dummy variable employed in the regression takes a 
value of unity when the pool default probability profile is riskier and zero otherwise. The coefficient for this 
variable is positive, as expected, and statistically significant. 
 

Table 1: Regression Statistics for Monte Carlo MVaR - AFA MVaR 

 
Note: The table shows the results obtained by regressing the difference 
between the AFA marginal VaR and the Monte Carlo marginal VaR on the 
duration of the deal, the attachment point of the tranche and a dummy 
variable for the default profile. In our analysis two default profiles are used 
in the Monte Carlo simulation, the default profile variable is set to 1 for 
exposures to securitisations assigned to the riskier of the two default 
profiles, and 0 otherwise. 
 

Figure 10: SEC-IRBA versus Monte Carlo MVaR 

 

Variable Estimate SE t-stat p-value

Intercept 0.02 0.05 0.48 0.64

Deal duration -0.02 0.01 -1.44 0.16

Attachment point 0.02 0.05 0.37 0.71

Default profile 0.09 0.03 2.93 0.00

R² = 0.8737
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Figure 11: SEC-SA versus Monte Carlo MVaR 

 
 
Finally, we compare, in Figure 10 and Figure 11, the Monte Carlo marginal VaRs to SSFA capital charges. The 
SEC-IRBA and SEC-SA capital charges are calculated according to the rules specified in Basel Committee on 
Banking Supervision (2014). The SEC-IRBA capital charges are slightly lower than the Monte Carlo MVaRs for 
some exposures. This reflects, in part, the firm-size adjustment for SMEs used in the IRBA. But, the regulatory 
and Monte Carlo MVaRs are generally positively correlated. 

7. Conclusion 
The models presented in this note constitute a toolbox of rigorous techniques for analysing securitisation 
portfolio risk. As such, they permit the user to analyse with confidence the risks in holding securitisation 
exposures, to understand the risk return trade-offs for such exposures and appropriate levels of capital. The 
models presented include a flexible Monte Carlo-based framework in which multi-period securitisations with 
complex cash-flow waterfalls may be represented and a simple, stylised analytical model, the Arbitrage Free 
Approach (AFA) (as proposed by Duponcheele, Perraudin and Totouom-Tangho (2013)). 
 
We show in a case study of Spanish and Portuguese SME-loan-backed securitisation tranches that our Monte 
Carlo model provides intuitively reasonable risk measures. Using it, we calculate Marginal Value at Risk 
(MVaR) measures and show that they are correlated across individual exposures with familiar risk drivers such 
as attachment point, maturity and agency rating. When implemented under comparable assumptions, the 
Monte Carlo-based capital numbers also exhibit high cross-sectional correlations with those implied by the AFA 
and with regulatory capital.  
 
Differences between the capital implied by the Monte Carlo and analytical models reflect the more realistic 
modelling of the cash-flow waterfall possible within the former and differences in the modelling of pool loan 
defaults. (This modelling is multi-period in the Monte Carlo model and single-period in the stylised models.) 
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