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Abstract

This paper generalizes a class of ratings-based credit derivative models
proposed by Jarrow, Lando, and Turnbull (1997) and Kijima and Komorib-
ayashi (1998) to allow for stochastic spreads and then applies this model to
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and Asset Backed Securities. We show that measuring risk in credit port-
folios is highly sensitive to the inclusion of randomness in spreads.
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1 Introduction

The nature and determinants of credit spreads are the subject of a substantial

and growing empirical literature. Researchers have investigated spreads using

equity-based models (Delianedis and Geske (2002), Huang and Huang (2002)

and Eom, Helwege, and Huang (2004)), hazard models (Duffie and Singleton

(1997), Duffie and Singleton (1999) and Driessen (2005)) and CAPM/APT asset

pricing models (Elton, Gruber, Agrawal, and Mann (2001)). Recently, several

authors have looked at liquidity effects in corporate credit markets (Ericsson and

Renault (2006), Longstaff, Mithal, and Neis (2005), de Jong and Driessen (2006)

and Perraudin and Taylor (2007)).

This paper is the first, to our knowledge, to investigate spreads empirically

using a ratings-based credit risk pricing model. Ratings based models were intro-

duced by Jarrow, Lando, and Turnbull (1997) and Lando (1998) and extended

by Kijima and Komoribayashi (1998). Related to hazard-based reduced form

models like those of Duffie and Singleton (1997), Duffie and Singleton (1999),

ratings-based models suppose that credit quality is described by an exposure’s

rating and that, on a risk-adjusted basis, ratings follow a Markov chain. If the

Markov chain is formulated in continuous time, the key focus is on the ratings’

risk adjusted transition matrix. If a continuous time approach is employed, the

key concept is the set of hazard rates that describe the likelihood of transitions

between ratings.

Both the Jarrow, Lando, and Turnbull (1997) and Kijima and Komoribayashi

(1998) models formulate risk-adjusted transition matrices by perturbing a his-

torical transition matrix in ways that depend on vector of rating-specific prices

of risk for each maturity. The historical matrix is then estimated from data on

actual ratings transitions while the prices of risk as chosen so as to fit the current

credit term structures for differently rated bonds.

The basic Jarrow-Lando-Turnbull model and the Kijima and Komoribayashi

model do not allow for stochastically evolving spreads for given rating categories.

Jarrow, Lando and Turnbull show how their model may be generalized to a

continuous-time diffusion framework in which rating-specific hazards of changes

in ratings evolve over time. Lando (1998) provides a systematic exploration of

this model. These diffusion-based models do imply stochastic spreads but it is not
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straightforward to solve for hazard rates from observed spreads and vice versa.

In this paper, we show how one may straightforwardly generalize discrete time

ratings based models to allow for stochastic credit spreads. For each future date,

“forward default probabilities” are chosen to match the current term structure

of credit spreads. As conditional probabilities, these evolve as martingale pro-

cesses under the risk neutral measure and their evolution then induces stochastic

time-variation in spreads. The model provides an analytically tractable way of

valuing securities and performing risk simulations in a ratings-based discrete time

framework with stochastic spreads.

We implement our model using spread data by rating and maturity extracted

from large cross sections of corporate bond and Asset Backed Security (ABS)

prices. The spreads are extracted using techniques developed by Harfush-Pardo,

Perraudin, and Taylor (2007).

We find, first, that the spreads exhibit interesting patterns of segmentation in

that different sections of the market distinguished either by ratings or maturity

ranges are more or less correlated with other parts of the market. Second, it

is noticeable that the risk adjusted forward default probabilities associated with

particular future years decline over time. We interpret this as reflecting a risk

premium associated with shocks to spreads.

Ratings-based models supplemented with assumptions about the correlation

of ratings transitions are widely used as a framework for measuring solvency risks

in financial institutions. It is interesting to quantify how much the introduction

of spread risk affects risk calculations on portfolios of credit exposures. In the last

section of the paper, we simulate loss distributions for realistic bond portfolios

and study how risk statistics are affected by the inclusion of stochastic spreads.

2 Model Description

2.1 Notation

To be precise, Jarrow, Lando, and Turnbull (1997) suppose that the risk-adjusted

matrix for each future period is the historical matrix with probability shifted off

the diagonal to other elements in a way that is proportional to a price of risk.
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Suppose at date t we observe a set of spreads S
(k)
t,j for different rating categories

k = 1, 2, ..., N and maturities j = 1, 2, .... Let γ be the expected recovery rate and

assume that shocks to the interest rates and those to credit risk are independent.

Under these assumptions, it follows that:

exp
[
S

(k)
t,j j

]
= Prob∗t

(
τd > t + j|k)

+ γ
[
1− Prob∗t

(
τd > t + j|k)]

(1)

Here, Prob∗t (.) denotes the risk-adjusted probability conditional on information

at date t. Also, τ d is the random time at which default occurs. Let Q
(k)
t,j denote

the probability of default between t and t + j conditional on information at t.

Then:

Q
(k)
t,j ≡ Prob (τ ∗ ∈ {t, t + 1, ..., t + j}) =

1− exp[−S
(k)
t,j j]

1− γ
(2)

Let q(k)t,j be the probability that default occur between t+j-1 and t+j conditional

on information at t and in particular conditional on the fact that the exposure

has a rating k at t.

q
(k)
t,j = Probt(τ

d = t + j|rating at t = k) = Q
(k)
t,j −Q

(k)
t,j−1. (3)

The probabilities for different ratings are denoted q
(k)
t,j ≡

[
q
(1)
t,j , q

(2)
t,j , . . . , q

(N)
t,j

]
.

2.2 Structure of the Transition Matrices

Now, we impose some structure on the risk-adjusted ratings transition matrix that

will prove useful. Suppose that the risk-adjusted distribution of ratings changes

conditional on information at t is described by a set of one-period transition

matrices Mt,1,Mt,2, . . .. The (k, l)th element of Mt,j represents the probability

that an obligor rated k at t + j − 1 will be rated l at t + j. Again without loss

of generality, we can write Mt,j in partitioned form as:

Mt,j =




M
(−d)
t,j

... M
(d)
t,j

. . . . . . . . . . . .

0
... 1


 . (4)

4



Where M
(−d)
t,j is N × N and M

(d)
t,j is N × 1. For any M dimensional vector v,

adopt the notation:

I(v) =




v1 0 . . . 0

0 v2 . . . 0
...

...
. . .

...

0 . . . 0 vM




(5)

is an N ×N diagonal matrix for any N−vector v = (v1, v2, ..., vN)′.

Assumption 1 Now, suppose M
(−d)
t,j has the form:

M
(−d)
t,j ≡ I(1N −M

(d)
t,j )M̃ (6)

where M̃ is invertible.

Here, note that M̃ is time homogenous and may be interpreted as the rating

transition matrix for an exposure conditional on no default.

Proposition 1 Under Assumption 1, one may derive an explicit expression for

the forward default probabilities conditional on information at t as a function of

observed spreads:

M
(d)
t,1 =

1

1− γ




1− exp[−S
(1)
t,1 (j)]

...

1− exp[−S
(N)
t,1 (j)]


 (7)

M
(d)
t,j =

1

1− γ

j−1∏

k=1

(
I(1N −M

(d)
t,k )M̃

)−1




exp[−S
(1)
t,j−1(j − 1)]− exp[−S

(1)
t,j (j)]

...

exp[−S
(N)
t,j−1(j − 1)]− exp[−S

(N)
t,j (j)]




for j = 2, 3, . . . ,

Conversely, the spreads S
(n)
t,j are uniquely determined by the forward default prob-

abilities M
(d)
t,j .

2.3 Fitting Observed Spreads

The above model provides a consistent set of risk-adjusted distributions for fu-

ture ratings. If credit risk is entirely described by the evolution of ratings, one
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may employ this framework to price credit-sensitive exposures by calculating dis-

counted, expected payoffs. Given a time homogeneous matrix, M̃ , one may also

benchmark the distributions from a single cross section of spreads observed at

date t (S
(n)
t,j for j = 1, 2, . . . and n = 1, 2, . . . , N) by choosing the M

(d)
t,j appropri-

ately.

In practice, fitting to a set of spreads using equation (7) may yield M
(d)
t,j that

are not monotonically increasing in d. In other words, for some future date t + j

the forward default probability for one rating k may be lower than that for a

lower credit quality rating l > k. Hence, to benchmark off spread data requires

that one perform a constrained minimization of the form:

min
M

(d)
t,j

j = 1, 2, . . .

n = 1, . . . , N

∑

j = 1, . . . , J

n = 1, . . . N

[
S

(n)
t,j − h

({
M

(d)
t,j , j = 1, 2, . . . , J , n = 1, . . . , N

})]2

subject to M
(d)
t,j,n > M

(d)
t,j,n+1 for all j = 1, 2, . . . n = 1, . . . , N − 1 . (8)

Here, h(.) is the mapping from the M
(d)
t,j to the St,j implied by the inverse of the

function given in equation (7).

The risk adjusted distributions specified in Assumption 1 imply that, while

spreads may change over time, they will do so in a non-stochastic way that is

fully predictable at some initial date 0. To see how spreads will vary, note that

the distribution of ratings at a future date j conditional on information at 0 is

given by a set of transition matrices:

[
M

(−d)
t,1 M

(d)
t,1

0′N 1

]
,

[
M

(−d)
t,2 M

(d)
t,2

0′N 1

]
, . . . ,

[
M

(−d)
t,j−1 M

(d)
t,j−1

0′N 1

]
,

[
M

(−d)
t,j M

(d)
t,j

0′N 1

]

(9)

To take an example, at date zero, the two year maturity spreads will be deter-

mined by the product of the left hand two matrices in this sequence. At date,

j − 2, the two year spreads will be determined by the product of the last two

matrices in the sequence. Hence the two years at date j − 2 will be known at 0

and will differ from those observed at that date.

One may deduce the following proposition:

Proposition 2 Under Assumption 1, spreads S
(n)
t,j for ratings n = 1, 2, . . . , N ,

and maturities j = 1, 2, . . . are constant over time t = 1, 2, . . . if and only if the
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forward default probabilities are constant over time for any given j, i.e.,

M
(d)
t1,j = M

(d)
t2,j (10)

for all t1 and t2.

2.4 Stochastic Spreads

Our approach may be generalized straightforwardly to the case in which spreads

evolve stochastically by allowing the Mt,j,d to be random. Stochastic evolution

in Mt,j,d implies evolution in the risk adjusted transition matrices that market

participants use to price credit-sensitive claims and hence stochastic variation

over time in spreads.

It is important that Mk
t,j,d < Mk+1

t,j,d for all k = 1, 2, ..., N , i.e. that default

probabilities increase as the credit quality decreases. A simple way to ensure this

is to suppose that Mk
t,j,d are given from initial spreads and that



M1
t+1,j−1,d

M2
t+1,j−1,d

...

MN
t+1,j−1,d




= ηt+1,j−1




M1
t,j,d

M2
t,j,d
...

MN
t,j,d




(11)

where ηt+1,j−1 is a common shock affecting all rating categories for a particular

future maturity and where

Et(ηt+1,j−1) = 1 for all t, j. (12)

forward default probabilities for different ratings but the same future date will be

perfectly correlated using this approach. But the term structure of credit spreads

may still be driven by a large number of factors as there may be up to as factors

as maturities considered.

3 Empirical Implementation

3.1 Data

To implement this approach, we begin by estimating spreads for different ratings

categories and maturities. The standard way to accomplish this is to fit the
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discount functions implicit in a data set of individual bond prices using non-

linear functions of maturity. Functions commonly used include cubic splines or

weighted averages of exponentials such as those employed in the Nelson-Siegel

approach. The obvious drawback of this approach when applied to credit spreads

for specific ratings categories is that the term structures for adjacent ratings

categories may cross.

Harfush-Pardo, Perraudin, and Taylor (2007) develop techniques for estimat-

ing credit term structures for multiple ratings categories and we apply their ap-

proach here. In brief, we estimate defaultable bond term structures on a given

date for different ratings categories by performing a least squares fit of the cross-

section of bond prices to the values implied by a risk-adjusted ratings transition

matrix. We impose simple constraints on the risk-adjusted transition matrix to

ensure that the implied credit term structures do not cross for different ratings

categories. More details on the extraction of ratings-specific term structures are

given in the Appendix.

The corporate bond data we employ consists of 50 monthly cross sections

of the prices of US straight bonds denominated in US dollars. The data set

contains approximately 9,500 bonds in total but available to estimate each cross

section varies. The government bond yields are the US constant maturity yields

published by the Federal Reserve Board. We interpolate these rates so that we

can obtain the interest rates for all integer maturities: 1,2,,30 years.

We value ABS by treating them as balloon bonds with maturity equal to the

weighted average life reported by Reuters. To estimate the spreads for ABS, we

use the same procedure described above that we used for corporate bonds.

The ABS data we employ is based on monthly time series of cross sections of

dollar denominated tranches listed in the Merrill Lynch ABS Index (fixed rate)

from June 2002 to September 2006. The Merrill Lynch index is composed only of

investment grade ABS. The total sample is composed of 92,708 observations of

which 67% are AAA bonds, 12% AA, 12% A and 8% BBB. Monthly snap-shots

have at least 700 observations.

The proportion of observations by maturity is shown in Table 1. As we can

see in Table 1, 80% of the observations have a maturity less than 5 years. Table 2

shows the proportion of observations by ABS sector. For a given rating category,

there is evidence that the market prices ABSs from different sectors differentially.
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In future work, we intend to investigate this.

4 Empirical Results

4.1 Term Structures

Figures 1 and 2 show representative sets of corporate bond spread term structures

for 2-year and 5-year maturity investment-grade corporate bonds. While the

term structures move broadly together, one should note the periods in which

discrepancies are evident. For example in 2002, for over a period of about a

quarter AAA and AA spreads were falling while those on A and BBB rose. The

converse happened over a 2 month period in the summer of 2003. These divergent

spread changes are apparent in both 2- and 5-year spreads.

Figures 3 and 4 show term structures for sub-investment-grade corporate

bonds. These behave very differently over time from the investment grade spreads.

BB- and B- grade spreads rise significantly from mid 2005 at a time when invest-

ment grade spreads are flat. CCC spreads remain high in early 2003 when other

spreads are falling and then fall sharply from late 2004 when low B-grade spreads

are rising. Again, the movements in 2- and 5-year maturity sub-investment-grade

spreads are quite similar.

Figure 5 shows ABS spreads by rating category over the same period. The

levels are appreciably higher than for similarly rated corporate bonds. The broad

time profile observed for corporate bonds reappears, however, in that high grade

bond spreads decline while the lowest category spreads rise in 2003. In the ABS

case, though, the lowest category shown is BBB rather than CCC.

4.2 Extracting Forward Default Probabilities

We extract risk-adjusted, forward default probabilities using the model described

in Section 2. We do this numerically using a least squares fit in order to enforce

the monotonicity of default probabilities for successive ratings categories. The

historical rating transition matrix we use to extract the forward default probabil-

ities is shown in Table ??. This matrix is the twelve power of a matrix estimated

from monthly transitions in Standard & Poor’s ratings. Given the transition
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matrix and an assumed recovery rate of 50%, we find the forward default proba-

bilities in each period that best fit the observed spread cross-section.

Figures 6 to 9 show corporate bond forward default probabilities over time for

2- and 5-year maturities and for investment grade and sub-investment grade. For

short maturity (2-year) spreads, the time profile of default probabilities mimics

that of the spreads themselves as one might expect. For longer (5-year) maturi-

ties, the forward default probabilities exhibit dynamics that differ from those of

spreads.

4.3 Volatilities and Correlations

Tables 4 and 5 show the volatilities of log forward default probabilities (by rat-

ing and maturity) extracted respectively from corporate bond and ABS data.

The ABS volatilities are lower for very short maturity (1-year) high grade ex-

posures (AAA and AA) but are higher for longer maturities for any rating and

consistently higher for lower ratings. In general, the volatility results suggest

striking differences between ABS and corporate bond forward default probability

distributions

Table 6 shows the correlations matrix of log forward probability changes by

rating for 2-year maturity corporate bonds. The main interest of the table is the

evidence it provides for a partitioning of corporate bond risk by credit quality.

Entries immediately off the diagonal, i.e., correlations between forward default

probabilities for adjacent ratings, are very high. AAA, AA+ and AA appear

closely correlated. However, AA- appears closer to the A+ category than the AA

category. Similarly, BBB- is more related to BBB than to BB+. The picture that

emerges therefore is one in which the ranges four ranges: (i) AAA to AA, (ii)

AA- to BBB-, (iii) BB+ to B-, and (iv) CCC alone, show distinct risk behavior.

The distinctions between the different forms of credit risk is underlined by

the fact that in the top right and lower left corners of the correlation matrix,

negative correlations may be observed.

Table 7 reports comparable correlation matrix for ABS forward default prob-

abilities. Here the forward default probabilities below BBB have been inferred

from the fit of higher rated securities so one cannot draw any conclusions from

the lower ratings grades. It appears that BBB is somewhat uncorrelated with
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the higher grades however.

Tables 8 and 9 show correlations for changes in log forward default probabil-

ities distinguished by maturity. Here, iN ase of corporate bonds (Table 8) the

picture is one of smooth decline in correlation as distance in maturity grows. This

is consistent with a two factor world in which weight shifts from one factor to

the other as maturity increases. In the case of ABSs (Table 9) a similar picture

emerges but with a more rapid decline in correlation as maturity grows.

To provide a more formal statistical measure of the number of factors driving

risk, Table 10 shows eigenvalues for the correlation matrix in Table 6 and for

several sub-matrices. Looking across the whole matrix, the first eigenvalue rep-

resents 46% of the eigenvalue sum. Two other eigenvalues are quite large in this

case. In the AAA to AA range, the first eigenvalue is 92.3% of the total whereas

it is 62.5% in the AA- to BBB- range. The eigenvalues for the correlation matrix

by maturity reinforces the impression that there are two dominant factors, one

at the short and one at the long end of the term structure.

We performed a similar eigenvalue analysis of the ABS correlation matrices.

For the correlation matrix or forward default probabilities by rating, there are

three substantial eigenvalues suggesting no simple factor structure. The eigen-

values for the maturity-based correlations suggests a two factor world as the

corporate bond case.

4.4 Expected Returns and Risk Premia

Figure 11 shows the time profile (actually plotted against declining maturity) of

a AAA forward default probability associated with a particular calendar date (10

years after the start of the sample). While the forward default probabilities should

be martingales in the risk neutral measure, they may change over time under the

physical probability measure; and indeed this is exactly what we observe in the

case depicted in the figure.

To be precise, the log forward default probability declines from -5.9 to about

-6.6 over the 4 years of the sample period. In other words, the downward drift in

the default probability is of the order of 70% or just under 20% per annum over

the first four years of the ten year exposure.

This decline may be interpreted as the decline required to compensate agents
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for holding claims with spread risk, i.e., it is reflective of the spread-volatility risk

premium.

5 Portfolio Value Simulations

Having estimated processes for the forward default probabilities, it is interesting

to explore the economic significance of them in a portfolio context. In this section,

we therefore report results on a set of simulations we performed on a realistic bond

portfolio with and without spread risk and over different horizons.

Characteristics of the bond portfolio we study are provided in Tables 12 and

13. The portfolio is reasonably diversified. It contains 150 exposures and the

maximum bond position face value is less than double the average value. The

distribution of ratings is reasonably even. The largest parts of the portfolios are

around A and the low B range.

The portfolio model used for the simulation corresponds to the ratings based

framework described in Section 2 except that correlation between rating transi-

tions is provided by an ordered probit approach like that used in Creditmetrics.

We simulate the portfolio over annual and monthly holding periods assum-

ing (i) constant spreads, (ii) stochastic spreads with Gaussian shocks, and (iii)

stochastic spreads with normal mixture shocks. The normal mixture shocks are

random draws from two normal distributions. With probabilities 0.7 and 0.3,

normals with volatilities of 20% (normal times) and 60% (crisis) are drawn.

The results of the simulations are shown in Table 14. Portfolio volatilities

are highly sensitive to the inclusion of stochastic spreads. VaRs and Expected

Shortfall risk measures based on quantiles somewhat out in the tail are less sen-

sitive in the Gaussian case, especially in the case of the longer, 1-year holding

period. When shocks are normal-mixture distributed, however, the introduction

of stochastic spreads has a substantial impact on risk measures even out in the

tail.

12



6 Conclusion

This paper has empirically investigated corporate bond and ABS spreads using a

ratings-based pricing model building on earlier contributions by Jarrow, Lando,

and Turnbull (1997) and Kijima and Komoribayashi (1998).

We examine segmentation between credit risk for different maturities and

credit qualities by examining volatilities and correlations of forward default prob-

abilities. Our results suggest there is a risk premium on spread risk and we doc-

ument the fact that it substantially affects portfolio volatility in a realistically

parameterized bond portfolio.

7 Appendix A: Derivations

8 Appendix B: Term Structure Fitting Algo-

rithm

This appendix briefly describes the techniques for estimating rating-specific de-

faultable bond term structures devised by Harfush-Pardo, Perraudin, and Taylor

(2007). These involve fitting the bond prices using a time-homogeneous, risk-

adjusted transition matrix restricted to ensure that the right hand column is

monotonically increasing in default probability.

A complication is that the use of a risk-adjusted transition matrix implies a

discrete time model. So coupon and principal payment dates must be mapped to

integer times. More precisely, we map the payment times to the nearest integer

number of years. Maintainting the original yield to maturity, we then calculate

artificial coupons such that the present value of the bond equals the observed

bond price in the data set. Once we have calculated the cash flows and the

integer times to payment, we estimate the corporate bond spreads as follows:

1. We start off by guessing some values for the elements of a quarterly tran-

sition matrix. We parameterize a tri-diagonal matrix quarterly transition

matrix. This implies that the annual transition matrix could have at least

four rating migrations to the right and to the left of the diagonal.
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2. We then calculate the annual transition matrix, by taking the triangular

matrix to the power of 4.

3. We compute that default probabilities at horizons j=1,2,,30 years, which

are equal to the right-hand column of the j power of the annual transition

matrix.

4. We price the bonds. We assume that the mean recovery rate is 50

5. We calculate the weighted mean of squared price errors. The weights are

equal to the time to maturity. Once the optimization routine converges or

the maximum number of 2,000 iterations is exceeded, we report the vector

of parameters such that the function is minimized. We report spreads on

zero coupon bonds for all rating categories and 1 to 30 years to maturity.
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Table 1: Number of Observations by Maturity Maturity (yrs) ABS

Years % Observations

1 27.0
2 24.8
3 18.0
4 9.7
5 6.7
6 4.3
7 2.7
8 1.4
9 2.2
10 1.1
10+ 2.0

Table 2: Number of Observation by ABS Type

ABS Sector (%) Total

ABS Automobile 31.2
ABS Credit Cards 7.3
ABS Home Equity Loans 40.3
ABS Manufactured Housing 12.9
ABS Miscellaneous ABS 4.7
ABS Utilities 3.6
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Table 4: Volatilities of Log Change of Forward Default Probabilities by Rating

and by Maturity for Corporate Bonds(%)

AAA AA A BBB BB B CCC

1Y 34.7 19.1 10.9 7.0 13.5 18.9 16.6

3Y 10.2 8.0 7.6 6.3 14.2 18.6 18.1

5Y 5.9 6.5 6.7 5.9 14.4 19.3 20.0

7Y 5.2 5.8 6.3 7.1 15.6 20.3 21.5

10Y 6.1 6.9 7.4 9.1 18.2 21.8 22.6

15Y 8.2 8.8 9.7 10.1 23.4 24.9 22.8

20Y 10.6 11.1 11.5 11.8 28.3 28.3 17.6

Table 5: Volatilities of Log Change of Forward Default Probabilities by Rating

and by Maturity for ABS(%)

AAA AA A BBB

1Y 16.5 11.1 10.7 24.5

2Y 13.2 9.2 9.5 22.7

3Y 13.8 11.8 10.4 18.2

4Y 15.2 20.1 18.1 17.6
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Table 7: Correlation Matrix of Log Changes of Forward Default Probabilities by

Rating for 2-year maturity ABS (%)

AAA AA A BBB BB B CCC

AAA 100.0 61.6 71.0 7.8 13.6 30.0 30.0

AA 61.6 100.0 93.9 46.1 21.8 8.7 4.0

A 71.0 93.9 100.0 44.0 21.3 16.0 13.9

BBB 7.8 46.1 44.0 100.0 70.5 12.0 -13.1

BB 13.6 21.8 21.3 70.5 100.0 61.8 22.0

B 30.0 8.7 16.0 12.0 61.8 100.0 87.2

CCC 30.0 4.0 13.9 -13.1 22.0 87.2 100.0

Table 8: Correlations of Log Change of Forward Default Probabilities among

maturities for AAA-rated bonds (%)

1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

1Y 100.0 80.2 53.7 31.4 30.3 25.6 18.7 8.1 -2.1 -12.5

2Y 80.2 100.0 81.4 47.7 39.3 28.2 19.0 8.8 -0.3 -9.1

3Y 53.7 81.4 100.0 85.3 70.7 52.0 39.3 31.4 25.9 18.5

4Y 31.4 47.7 85.3 100.0 93.1 75.6 62.0 54.5 49.8 43.1

5Y 30.3 39.3 70.7 93.1 100.0 92.7 81.9 72.4 64.3 54.2

6Y 25.6 28.2 52.0 75.6 92.7 100.0 96.7 89.3 80.0 68.6

7Y 18.7 19.0 39.3 62.0 81.9 96.7 100.0 97.2 90.0 80.1

8Y 8.1 8.8 31.4 54.5 72.4 89.3 97.2 100.0 97.3 90.6

9Y -2.1 -0.3 25.9 49.8 64.3 80.0 90.0 97.3 100.0 96.8

10Y -12.5 -9.1 18.5 43.1 54.2 68.6 80.1 90.6 96.8 100.0

Table 9: Correlations of Log Change of Forward Default Probabilities among

maturities for AAA-rated ABS (%)

1Y 2Y 3Y 4Y

1Y 100.0 53.4 32.3 25.8

2Y 53.4 100.0 93.4 76.8

3Y 32.3 93.4 100.0 92.5

4Y 25.8 76.8 92.5 100.0
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Table 10: Eigenvalues from correlation matrices for corporate bonds

Correlations across ratings Correlations across maturities

Eigenvalue % Total Eigenvalue % Total

1 7.82 46.0 20.23 67.4

2 2.91 17.1 6.19 20.6

3 2.03 11.9 1.46 4.9

4 1.33 7.9 1.01 3.4

5 0.87 5.1 0.68 2.3

Correlations AAA to AA Correlations 1Y-4Y maturities

Eigenvalue % Total Eigenvalue % Total

1 2.77 92.3 2.92 73.0

2 0.20 6.5 0.84 21.1

3 0.03 1.2 0.21 5.3

4 - - 0.02 0.5

Correlations AA- to BBB- Correlations 5Y-10Y maturities

Eigenvalue % Total Eigenvalue % Total

1 4.37 62.5 5.19 86.5

2 1.30 18.6 0.67 11.1

3 0.11 1.6 0.12 2.0

4 0.62 8.9 0.01 0.2

5 0.03 0.5 0.00 0.1

Table 11: Eigenvalues from correlation matrices for ABS

Correlations across ratings Correlations across maturities

Eigenvalue % Total Eigenvalue % Total

1 3.13 44.78 2.96 74.11

2 1.87 26.67 0.85 21.27

3 1.42 20.27 0.18 4.50

4 0.36 5.15 0.00 0.12

5 0.16 2.28 - -

22



Table 12: Bond Principal and Recovery Assumptions

Average Max. Min.

Principal (Euro) 1587 2962 59
Recovery rate (%) 0.48 0.7 0.3

Notes: The portfolio comprises 150 bonds.

Recoveries for each bond are assumed to be

beta-distributed with a volatility of 0.25.

Table 13: Portfolio Composition

Portfolio Portfolio
Fraction (%) Value (%)

AAA 0.040 0.040
AA 0.073 0.079
A 0.113 0.117
BBB+ 0.020 0.025
BBB 0.033 0.035
BB+ 0.080 0.076
BB 0.100 0.090
BB- 0.093 0.109
B+ 0.073 0.061
B 0.140 0.138
B- 0.167 0.160
CCC 0.067 0.070

Notes: The total value of the portfolio

is Euro 238,035.
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Figure 1: Investment Grade 2-Year Maturity Corporate Bond Spreads
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Figure 2: Investment Grade 5-Year Maturity Corporate Bond Spreads
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Figure 3: Sub-Investment Grade 2-Year Maturity Corporate Bond Spreads
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Figure 4: Sub-Investment Grade 5-Year Maturity Corporate Bond Spreads
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Figure 5: Investment Grade 2-Year Maturity ABS Spreads

0

100

200

300

400

500

600

Jun-02 Jan-03 Aug-03 Mar-04 Oct-04 May-05 Dec-05 Jul-06

Trading Date

Ba
si
s 
Po
in
ts

AAA
AA
A
BBB

Figure 6: Forward Default Probabilities for Investment Grade 2-Year Corporate

Bonds
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Figure 7: Forward Default Probabilities for Investment Grade 5-Year Corporate

Bonds
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Figure 8: Forward Default Probabilities for Sub-Investment Grade 2-Year Cor-
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Figure 9: Forward Default Probabilities for Sub-Investment Grade 5-Year Cor-

porate Bonds
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Figure 10: Forward Default Probabilities for 2-Year Maturity ABS (Recovery
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