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Abstract 

This paper examines how the capital required for securitisation tranche exposures varies as 

the maturity of the securitisation increases. We investigate for different maturities the 

appropriate capital for (i) loan pools, (ii) securitisation deals as a whole (i.e., all the tranches 

within a given deal), and (iii) individual tranches of differing seniority. 

 

This issue is highly topical because the Basel Committee’s recent proposals on regulatory 

capital for securitisations include an expected loss component that is highly sensitive to 

maturity. An alternative proposal, the Arbitrage Free Approach (AFA), advanced by the 

industry (see Duponcheele et al (2013)) builds maturity effects into the capital formulae in a 

very different way. 

 

The paper makes the following points: 

 

1. We develop a new multi-period version of the AFA and use show that it is equivalent 

to the 1-period AFA of Duponcheele et al (2013a) when maturity-adjusted parameters 

are included. 

 

2. The AFA is capital neutral in the sense that securitisation capital for all the tranches 

of a deal equals the IRBA capital inclusive of maturity adjustment. We show that 

IRBA maturity adjustment is quite conservative when compared to the capital implied 

by an industry-standard ratings-based Monte Carlo credit portfolio model. 

 

3. Using the same Ratings-based Monte Carlo model, we show that with suitable 

maturity adjustments, the AFA yields an appropriate dispersion of capital across 

tranches of different seniorities while maintaining capital neutrality.   

                                                 
1
 Dr. Georges Duponcheele is Head of Banking Solutions, BNP Paribas. Dr. William Perraudin is Director of RCL 

and Adjunct Professor of Imperial College, London. Dr. Daniel Totouom-Tangho is in Credit Quantitative 
Research, BNP Paribas and Adjunct Associate Professor of Financial Engineering at New-York University (NYU-
Poly). Correspondence should be addressed to the authors at georges.duponcheele@bnpparibas.com, 
william.perraudin@riskcontrollimited.com or daniel.totouom-tangho@bnpparibas.com. 
2
 The authors thank from BNP Paribas, Fabrice Susini, Antoine Chausson, Duc Dam Hieu, Alexandre Linden, 

Paul Vercoustre and from other institutions Alexander Batchvarov, Shalom Benaim, Stephan Meili and Alastair 
Pickett for their contribution, their numerous and helpful comments. William Perraudin thanks Peng Yang for 
excellent research assistance and many insightful comments and suggestions. Totouom-Tangho thanks Kaiwen 
Xu for ensuring that time was made available to develop this solution. All errors are ours. The views expressed 
are the authors’ own and not necessarily those of BNP Paribas nor those with whom we had discussions or 
their firms. 

mailto:georges.duponcheele@bnpparibas.com
mailto:william.perraudin@riskcontrollimited.com
mailto:daniel.totouom-tangho@bnpparibas.com


2 | P a g e  

SECTION 1 – INTRODUCTION 

Duponcheele et al (2013a) derive a simple, closed form model of securitisation capital. That 

model includes maturity adjustments at the level of the total deal capital (in line with the 

maturity adjustments in the on-balance sheet Internal Ratings Based Approach (IRBA) rules 

of Basel II). Duponcheele et al (2013a) left open, however, the issue of whether input 

parameters that influence the dispersion of capital across tranches of differing seniority 

should be adjusted for maturity. 

 

This paper derives a simple, multi-period model of securitisation capital fully consistent with 

the original AFA which provides a rigorous justification for maturity adjustment in the 

AFA’s inputs. As with the original AFA, the model may be aligned perfectly with the IRBA 

capital at different maturities and hence remains ‘Arbitrage Free’. 

 

The AFA parameter maturity adjustments implied by the analytical model include 

adjustments to both correlation and default probability inputs. In both cases, the adjustments 

are based on extremely simple, closed-form expressions. 

 

The resulting model may be compared with the Modified Supervisory Formula Approach 

(MSFA) recently proposed by the Basel Committee (see BCBS (2012)). This model also 

allows explicitly for credit risk in securitisations in a multi-period setting. However, it cannot 

be solved in closed form and is therefore implemented using a sequence of approximations 

including fitting the moments of a beta-distribution.  

 

Importantly, the total deal capital implied by the MSFA bears no direct relation to KIRB, the 

capital required in Basel II if pool assets are held on balance sheet. Hence, if implemented, 

the MSFA would introduce dramatic inconsistencies between the regulatory capital required 

for the same risks packed in different forms. 

 

Both the model of this paper and the MSFA are simple models with limited detail in the 

modelling of multi-period risks. It is helpful and instructive to compare the capital from such 

models with realistically complex models. In the second half of the paper, we therefore 

calculate capital for a set of deals using a multi-period Ratings-based Monte Carlo model 

generalised to permit the risk and capital analysis of exposures to securitisation tranches. We 

show that, suitably adjusted, the multi-period AFA implies very similar capital charges. 

 

The Monte Carlo model we employ is based on the industry-standard ratings-based credit 

portfolio model methodology popularised by J.P. Morgan (1997). Note that ratings based 

credit portfolio models of this type are widely used for calculations of trading book 

Incremental Risk Charges under the post-crisis Basel 2.5 regulations set out in BCBS (2009). 

 

We extend the ratings-based methodology to permit analysis of portfolios including 

securitisation tranches using the Longstaff-Schwartz regression approach. This was employed 

in Longstaff and Schwartz (2001) for pricing American options and was first applied to credit 

portfolio risk assessment by Peretyatkin and Perraudin (2004).  

 

The approach is designed to cope with situations in which the a Monte Carlo is being 

employed to estimate a payoff in the future but that future payoff itself depends on a future 

price that, itself, may only be estimated through a Monte Carlo. To avoid the nested Monte 

Carlo problem that arises (and which is computationally infeasible), the approach involves 
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estimating a conditional (regression-based) pricing function via a preliminary Monte Carlo 

and then using it in a subsequent Monte Carlo, in our case to generate VaRs and Marginal 

VaRs. 

 

The analysis of this paper is topical because the Basel Committee’s recently published 

proposals for securitisation capital are based on capital formulae (in particular the MSFA) 

that are, controversially, highly sensitive to maturity. Some of the conservatism comes from 

the use of layers of conservative approximation within a model that cannot be solved in close 

form. In addition, the basis of capital employed in the MSFA differs from the ‘Unexpected 

Loss’ notion employed in the Basel II on-balance-sheet capital rules in that an additional, 

highly conservative expected loss is included. 

 

The Committee’s objective in including expected loss in this way is not entirely clear. One 

motivation may have been that adding a conservative measure of expected loss mitigates a 

major weakness of the Supervisory Formula Approach (SFA) which was the forerunner of 

the MSFA under Basel II. 

 

The SFA implies capital for mezzanine tranches that is excessively sensitive to changes in 

pool credit quality. This sensitivity (commonly termed the “cliff effect”) means that quite 

minor losses on the pool could generate substantial increases in capital. The sensitivity also 

reportedly encouraged capital arbitrage by banks
3
. 

 

The solution offered by the MSFA is to add a further conservative layer of capital for 

securitisation tranches over and above their Unexpected Loss by including a conservative 

measure of Expected Loss. These Expected Losses are over-conservative (a) because they 

cover not only potential losses for up to five years but also (b) because they are computed 

inclusive of a risk premium of the kind used in pricing credit risk sensitive instruments. 

Particularly for long-maturity securitisations, the effect is to mitigate the cliff effect 

significantly. 

 

However, since expected losses (inclusive of a risk premium) grow at a rate more than in 

proportion to maturity, this solution to the cliff effect conundrum immediately implies very 

substantial increases in capital for longer dated tranches. 

 

A second possible justification for including Expected Losses as a form of capital is that the 

cash-flow waterfall of some securitisations allow for the deferral of coupon payments on 

some mezzanine tranches as the pool deteriorates well before the tranche actually defaults. If 

coupons are deferred in this way, there will be insufficient interest margin on the tranche in 

question to cover the tranche-level expected losses. 

 

Such coupon-deferral features are only found in some deals and, in any case, while they 

disadvantage mezzanine tranches, they actually reinforce the credit quality of senior tranches. 

We believe the appropriate treatment of this issue in the capital rules is to include a test (i) of 

whether coupon deferral is possible and if so (ii) whether adequate interest margin exists at 

the tranche level. We intend to return to this issue in a future study. 

 

                                                 
3
 This has lead one major regulator to limit use of the SFA by banks it regulates. 
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The remainder of this paper is organised as follows. Section 2 reviews the 1-period AFA 

developed in Duponcheele et al (2013a). Section 3 introduces a simple multi-period extension 

of it. Section 4 looks at how capital on loan pools increases with maturity. Section 5 

examines maturity adjustments as they affect the total deal capital for a securitisation. Section 

6 looks at the impact of maturity on the appropriate dispersion of capital across tranches of 

differing maturity. Section 7 reconciles results obtained using the multi-period AFA with 

those implied by the Ratings-based Monte Carlo model. Section 8 concludes. Appendices 

provide the data used in the calculations, a description of the Ratings-based Monte Carlo 

model employed in the paper and a systematic description of the equations of the simple, 

multi-period version of the AFA. 

 

SECTION 2 – SECURITISATION CAPITAL IN THE 1-PERIOD AFA 
 

As in Duponcheele et al (2013a), suppose that a perfectly granular securitisation pool 

contains 1-year loans. Default on each loan is triggered when an associated standard Gaussian 

latent variable falls below a threshold denoted:   . The latent variable for the ith loan,   , 
satisfies: 

 

    √      √     √     √    √        (1) 

 

Since    is standard Gaussian, the probability of default for the ith exposure is: 

 

     (  ) (2) 

 

In equation (1),   is a factor common to all the exposures in the pool but orthogonal to the 

common factor driving the bank portfolio, namely:   . The random variables       and    are 

assumed to be standard Gaussian and   and   are fixed parameters in the unit interval. 

 

Substituting, one may define the following expressions: 

 

    √         √           (3) 

    
 

√     
 (√     √    √    ) (4) 

         (   )  
  (5) 

 

The parameter       then equals the pairwise correlation of latent variables for individual 

exposures in the pool. 

 

Consider losses on a tranched position. If pool losses are denoted  , losses on a tranched 

position equal (i) zero if    , (ii)    , if      , and (iii)   if    .  

 

If   is only marginally larger than  , when    , the tranche will default and the recovery 

rate will be zero. Hence, expected losses on such a tranche just equal the tranche’s default 

probability which in turn equals the probability that losses on the pool exceed the attachment 

point A. As Duponcheele et al (2013a) note, this implies the expected loss,        ( )  for a 

thin tranche attaching at   is: 

 

        ( )   (
   (  ) √           

  (
 

   
)

√     
) (6)  
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To obtain the expected losses (denoted ),( DAELThick ) of a discretely thick tranche with 

attachment point A and detachment point D, one must integrate the above expressions for the 

marginally thin tranche from A to D. This yields: 

 

 
AD
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
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In the above equation, )(XELSenior equals the expected loss for a senior tranche with 

attachment point X  and   (  ) is the bivariate cumulative standard normal distribution 

function. 

 

To calculate the marginal VaR (at an -confidence level) of a thin tranche held within a 

wider bank portfolio, following the insight of Gourieroux, Laurent and Scaillet (2000), one 

may calculate expected losses conditional on the common factor driving the bank portfolio, 

   equalling its - quantile,  1N . 

 

Conditional on     equalling  1N , the stressed default probability of pool exposures is: 
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and the conditional pairwise correlation between pool assets is: 

 

 *

,   Pool
 (10) 

 

Replacing    and       where they appear in equations (7) and (8) with     and        , 

respectively, yields expressions for the thin and thick tranche marginal VaRs. 

 

Unexpected Loss-based Capital, denoted ),( DAK , for a thick tranche attaching at A  and 

detaching at D , may be expressed as: 

 

 ),|,(),|,(),( * PDDAELPDDAELDAK PoolheThickTrancheThickTranc     (11) 

 

In Duponcheele et al (2013a) it was proposed that the above expression (which was derived 

from a 1-period model) be used to calculate tranche capital for tranches of differing maturity 

by setting the stressed default probability equal to: 

 

      (        )     (12)  
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rather than the expression in equation (9). Here,      is the Basel II IRBA capital for the pool 

assets (exclusive of expected loss but inclusive of maturity adjustment) and     is the total 

pool IRBA expected loss inclusive of maturity adjustment. LGD is the mean loss given 

default for the pool assets. 

 

Use of an adjusted stressed default probability in this way ensured that the approach is 

‘arbitrage free’ in the sense that, for any maturity, the total capital for the deal equals the 

IRBA on-balance-sheet capital for the pool assets,     . Duponcheele et al (2013a) suggested 

that there might be need to adjust other inputs to the securitisation capital formula to ensure 

that the dispersion of capital across tranches of different seniorities was appropriate. It is to 

this issue that we turn in the next few sections. 

 

 

SECTION 3 – SECURITISATION CAPITAL IN THE M-PERIOD AFA 
 

Some General Results 
 

We begin by considering securitisation capital within a general theoretical setting. Consider 

capital calculated at date 0 for a VaR horizon equal to 1 year. Let cumulative loan losses from 

0 up to a terminal date of M years on a securitisation pool be denoted: ML . 

 

The value at date 1t  of a tranched exposure to the securitisation pool, with attachment 

point A  and detachment point D , is denoted 1V . We suppose that the tranched exposure 

forms part of the portfolio of a bank and that the credit quality of the bank’s portfolio at date 

1 depends on a random variable 1,BY . We indicate the -quantile of the distribution of 1,BY  as 

 

1NQ . 

 

We suppose for simplicity that interest rates and coupon rates are zero. We use  tE  to 

denote the expectations operator at time t  with respect to actual distributions. As is standard, 

we assume that securities prices may be expressed as expectation with respect to risk adjusted 

or ‘risk neutral’ probabilities, and we denote the ‘risk neutral’ expectations operator as  *

tE . 

 

Subject to these assumptions the Unexpected Loss on the tranched position in the 

securitisation pool may be expressed as: 
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Note that the expectations of loan losses that appear in the second line of (13) are calculated 

with actual distributions in the first period (0 to 1) and inclusive of risk premiums in 

subsequent periods, 2, 3,..., M. Correspondingly,  MM LG*

,  and  MM LG*  are distribution 

functions for cumulative losses up to date M  inclusive of risk premiums in all periods 

except the first. 
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The first equality in equation (13) says that the UL-based capital equals the difference 

between (i)  10 VE , i.e the expectation  0E at time 0t  of future price of the position 1V  

at 1t  and (ii)  QYV B 1,10E , the expectation  0E at time 0t  of future price of the 

position 1V  at time 1t , conditional on the bank’s risk factor being at it’s -quantile level at 

the one year horizon, i.e., QYB 1, . The second equality in (13) ‘unpacks’ the expected 

future price and the stressed expected future price.  

 

Line 3 in (13) follows from        LAALDDALDAD ,min,min,max,min   and 

the fact that, for any random variable, L , with a distribution function, F , and density f , one 

has     
DD

dLLFdLLfLDDFLDD
00

)()())(1(,minE  where the last equality 

follows from integration by parts. 

 

The above argument is rather general in the sense that loan losses could be generated by 

different models. It will hold for a ratings-based model of loan losses with ratings transitions 

(as is widely employed for actual credit portfolio modelling by many banks) or by a multi-

period Merton style model of the type used to derive the MSFA. 

 

Deriving Maturity Adjustments within the AFA 
 

The two integrals in the last line of equation (13) are the counter-parts of the two expressions 

that make up the Unexpected Loss formula for discretely thick tranches in the AFA. The first 

term is a Marginal VaR and the second an Expected Loss. The difference between the two 

then constitutes an Unexpected Loss. 

 

From the arguments in the last section, we can derive an explicitly multi-period version of the 

AFA by calculating the difference between two expectations of hold-to-maturity tranche 

credit losses
4
. The two expectations should use appropriate distributions. Both should employ 

probabilities for the evolution of risk factors in periods after period 1 and the first of the two 

expectations should condition appropriately on the bank stress, i.e., QYB 1, . 

 

One could accomplish this using different credit risk models but the most straightforward is 

to employ a multi-period Merton-type model as follows. 

 

Suppose, the credit quality of individual loans is driven by latent variables describing the 

underlying values of the borrowers’ assets,     . We suppose that: 
 

      √      √   √     √   √         (14) 
 

Here,   ,   ,      are the levels of standard Brownian motions (with   ,   ,      all equal to 

zero) and, hence, have discrete time increments that are normally distributed and serially 

independent. Since the latent variables are here taken to have normally distributed discrete 

time increments, it is more reasonable to suppose that they equal the natural logarithm of the 

borrowers’ asset values rather than the levels of these values.  

                                                 
4
 This approach was suggested to us by Shalom Benaim whom we also thank for stressing the importance of 

maturity effects in the dispersion of capital across tranches. 
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Here,      is the single common factor driving the credit quality of the bank’s wider portfolio 

while    is another common factor orthogonal to     .      is a factor idiosyncratic to the ith 

borrower. 

 

The pairwise correlation of the discrete time increments             and             for 

obligors i and j is: 
 

         (   ) 
  (15) 

 

This equals the correlation of latent variables in equation (5). Conditional on      , it is 

simple to show that the correlation of           and           is equal to: 
 

   
  

          (                      )

     (         |  )     (            )
 
(   )   (   )     

(   ) (   )
 (16) 

 

One may verify that, for    , this reduces to:   . For large  , on the other hand, this 

correlation approaches the unstressed correlation,      . 
 

Adopting the above assumptions about the basic factor structure of the model, we assume that 

the ith loan defaults at date M if and only if          where      ( 
  

√ 
) so that     

is the M-period default probability under the natural measure.  
 

Note that in formulating the model in this way, we effectively are employing a pure Merton 

model (as in Merton (1974)) in which defaults are registered only at the maturity date,    
rather than a Black-Cox-style model (see Black and Cox (1976)) in which defaults may occur 

at intermediate points before full maturity. Using a pure Merton model is analytically 

convenient in this context. In the discussion of the Ratings-based Monte Carlo analysis 

below, we shall examine the issue of how outcomes are affected by allowing for intermediate 

defaults. 
 

If the       are the natural logarithms of the individual borrowers’ asset values, including a 

risk premium in the dynamics of these risk factors after the first period is straightforward. 

The risk adjusted process followed by the latent variable for the ith obligor becomes: 
 

  ̃    
                                    

                
 (17) 

 

Here,   is a per-period risk premium.
5
 Suppose that the historically observed default 

probability appropriate for  -maturity assets is denoted Mpd . Under the above assumptions, 

the ith obligor defaults between dates 0 and   if a Gaussian random variable falls below a 

threshold as follows:          (   )  . Hence, the default probability inclusive of 

appropriate risk premiums is: 

   






 
 

M

M
pdNNPD MM

)1(1
 (18) 

  

                                                 
5
 This parameter could be set through calibration using the fact that expected losses implicit in bond market 

spreads represent expected losses plus a risk premium. In a similar fashion, BCBS (2013a) bases a calibration of 
a risk premium parameter used in the MSFA on a study by Bohn (2000). 
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The key point to grasp is that adopting the above assumptions, on a hold-to-maturity basis, 

defaults on the securitisation pool and on the wider bank portfolio occur when realisations of 

Gaussian random variables fall below cut-off points:   ̃      (   )  . The 

correlations of these Gaussian random variables are given by:       and conditional on the 

bank stress event by   
 . Hence, the model is formally identical to the one period AFA model 

of Duponcheele et al (2013a) except with inputs MPD  and   
  rather than PD  (as defined in 

equation (2)) and   . 
 

As in equation (9), one may derive the default probability (denoted MPD , ) of a single obligor 

conditional on the bank stress event,  1

1,

 NYB . This yields: 

 

 

   
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

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 (19) 

 

However, as in the 1-period AFA, the stressed default probability, MPD , , may be set in such 

a way as to ensure neutrality between on- and off-balance sheet capital, i.e., to ensure that 

total deal capital equals the IRBA capital charge for the pool assets. This may be achieved by 

setting: 

 

 M

IRB

M PD
LGD

K
PD ,  (20) 

 

Here, IRBK  is the IRBA pool capital charge inclusive of IRBA maturity adjustments. 

 

To understand where this comes from, note that the IRBA capital formula for a single loan 

may be stated succinctly as:   MIRB MatLGDPDLGDPDK   . Here, MMat  is a 

parametric function of maturity, M , PD  is the 1-year default probability of the loan and 

PD  is the 1-year default probability conditional on the assumption that the single common 

factor driving the bank’s total portfolio of credit exposures equals its  -quantile. The AFA as 

described in Duponcheele et al (2013a) uses as inputs * , MMatPDPD '  and 

MMatPDPD  ' . 

 

As discussed above, one might consider employing a stressed, M-year-maturity, default 

probability. But unless this stressed default probability is chosen exactly as in equation (20), 

the total capital for assets held on-balance sheet will differ from the total requirement for all 

the tranches in the securitisation. 

 

In summary, we propose that applications of the AFA employ an M-period default 

probability inclusive of risk premiums for years after the first year (as specified in equation 

(18)) and then from this infer a stressed M-period default probability using equation (20). 

This combination of default probability and stressed default probability is consistent with the 

analysis of equation (13) but also yields capital neutral results. 
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SECTION 4 – MATURITY AND LOAN CAPITAL 
 

In this and subsequent sections, we present numerical calculations of capital for 

securitisations of different maturities. We begin by reviewing the conservatism of the 

maturity adjustments in the IRBA. This is a relevant issue because the AFA capital for the 

entire deal is aligned with the IRBA pool asset capital, i.e., IRBK . The IRBA IRBK  includes a 

maturity adjustment which is therefore inherited in the AFA. 

 

We first examine, in brief summary form, the findings of Kiesel, Perraudin, Taylor (2003), a 

paper written as part of the calibration effort on the IRBA risk charges. This paper analyses 

the sensitivity of capital to different aspects of the portfolio, including maturity, by 

calculating capital for portfolios of loans based on a standard ratings-based credit portfolio 

model of the type employed in this paper. The correlation structure employed is that of a 

single common factor. Individual loans have a common pairwise asset correlations denoted:

  which is set equal to 20% in all cases. Results are presented for homogeneous portfolios 

consisting of 500 loans all having the same rating and maturity. 

 

Table 1: Portfolio VaRs from Kiesel, Perraudin and Taylor (2003) 

 
 

Note that, under these assumptions on correlations and with a homogeneous pool of assets, 

VaRs and Marginal VaRs (as a fraction of expected value) are equal so long as the portfolio 

is large enough for idiosyncratic risk to be diversified away (which is the case of a portfolio 

of 500 loans). Hence, the results we present may be regarded either as VaRs or as MVaRs. 

 

Also, note that the VaRs are calculated using a portfolio loss distribution in which losses are 

measured as deviations from the expected future value of the portfolio. Hence, though we 

Homogeneous 

Portfolio 

Rating

Three-

year 

maturity 

loan

Six-year 

maturity 

loans

Three-

year 

maturity 

loans

Six-year 

maturity 

loans

AAA 0.08 0.23 0.08 0.23

AA 0.31 0.77 0.29 0.85

A 0.55 1.33 0.54 1.41

BBB 3.65 4.43 3.39 4.76

BB 9.63 10.48 9.87 11.01

B 20.58 17.42 20.85 21.32

CCC 20.39 14.91 29.11 31.04

Jarrow-Turnbull 

recovery MVaRs

Duffie-Singleton 

recovery MVaRs

Notes: Portfolios consist of 500 exposures of equal face 

value and rating. VARs/MVaRs are calculated with a 99.9% 

confidence level and are measured in percent of the 

expected value at the 1-year VaR horizon. The correlation 

coefficient of the latent variables, ρ, equals 0.2.  Under 

our assumptions, VaRs and MVaRs in percent of mean 

payoffs are identical.
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shall here call them VaRs (as is done in Kiesel, Perraudin, Taylor (2003)), they are equivalent 

to Unexpected Losses. 

 

Two approaches to modelling recoveries are employed: (i) the Jarrow-Turnbull approach (see 

Jarrow and Turnbull (1995)) in which recoveries are a fraction of the default free equivalent 

loan (also employed in Jarrow, Lando and Turnbull (1997)), (ii) the Duffie-Singleton 

approach (see Duffie and Singleton (1999)) in which recoveries equal a random fraction of 

the value just prior to default.
6
 A third approach sometimes preferred by practitioners is to 

suppose the recovery in the event of default is a fraction of the par value of the bond or loan. 

When interest rates are low, this third approach is similar to the Jarrow-Turnbull approach. 

 

The results in Table 1 exhibit significant positive sensitivity of VaRs for high credit quality 

portfolios but strikingly little for low credit quality, in which case the sensitivity with respect 

to maturity may even be negative. 

 

What is the intuitive explanation for these results? When credit quality is high, transition risk 

predominates and capital grows with maturity in the expected way. However, when credit 

quality is low, the jump in value that occurs upon default plays a larger role. Whether capital 

increases with maturity or not then depends on how one chooses to model recoveries. 

 

Under the Duffie-Singleton approach, when default occurs, the loan value jumps down even 

if the credit quality just before default is low. Under the Jarrow-Turnbull approach, the loan 

price just prior to default is already low if the rating is low and the maturity is high. So the 

price jump that occurs at default is not so great. This then generates smaller capital. 

 

Though the Duffie-Singleton and Jarrow-Turnbull approaches are probably those most 

commonly used in academic studies, one might argue that the practitioner approach 

mentioned above of employing the par value of the bond is preferable.
7
 Note that using 

recoveries equal to the loan par will reduce (or push negative) the sensitivity of capital to 

maturity even more as (for a given recovery fraction) it has the effect of reducing the size of 

the jump from the value immediately before default to that observed after default. 

 

The Jarrow-Turnbull approach with positive interest rates is likely to give maturity-

sensitivities of capital intermediate between those implied by the other two approaches. In the 

calculations we perform below, we use the Jarrow-Turnbull approach but perform 

calculations with zero interest rates, in which case it becomes equivalent to the ‘practitioner 

approach’.  

                                                 
6
 Three approaches are commonly employed in portfolio credit risk models for handling recoveries. In each 

case, recoveries are assumed to equal a fractional recovery rate applied to a scale variable. Jarrow and 
Turnbull (1995) and Jarrow, Lando and Turnbull (1997) take the scale variable to equal the value at default of a 
default free bond or loan with the same contractual cash-flows as the defaulted security. Duffie and Singleton 
(1999) assume the scale variable is the value of the bond or loan immediately prior to default. If the bond was 
rated lowly, say at CCC just before default, one may see that the implied recovery will be lower than under the 
Jarrow-Turnbull assumption. The difference in a practical modelling exercise is less great than it might seem in 
that the fractional recovery rate employed may be adjusted depending on the scale variable approach 
employed, or, to put it another way, different data may be employed in calibrating the recovery rate. A third 
possible approach is to use as scale variable the par value of the loan or bond. 
7
 One might expect that entitlement in bankruptcy settlements will be based on par values rather than default 

free securities or value prior to default which argues in favour of using par value. 
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SECTION 5 –MATURITY AND TOTAL SECURITISATION CAPITAL 
 

On- and Off-Balance Sheet Capital 
 

In this section, we present new results on capital for pools of loans. In some cases, we look at 

capital for a portfolio of loans held directly by a bank within a wider portfolio of bank loans. 

In others, we calculate capital for a collection of all the tranches in a securitisation again held 

within a wider bank portfolio of loans. One may refer to these two situations as total capital 

on and off-balance sheet. 

 

We evaluate capital using a ratings-based Monte Carlo model and then compare the results (i) 

with the regulatory capital figures suggested by the IRBA for an asset pool and (ii) with the 

capital implied by the MSFA for the collection of all the tranches. Note that because the AFA 

is capital neutral, IRBA capital is equivalent to the capital implied by the AFA. 

 

Table 2: Tranche Par Assumptions 

 
 

Modelling Assumptions 
 

We conduct these calculations for portfolios of loans with maturities of 1, 2, 3, 4, and 5 

years
8
 and for two credit quality cases, namely a portfolio comprising BB-rated loans and a 

portfolio made up of BBB-rated loans. The assumptions we make about the stylised 

securitisations are as follows. 

 

The VaR horizon is a year and the maturity of all the loans in the bank’s wider portfolio is 

three years. The maturity of loans in the structured product pool varies from 1 to 5 years and 

is the same as that of the structured product. There is a single common factor in the structured 

product pool and another single common factor in the wider bank portfolio. 

 

1. The structured product exposure is negligibly small compared with the wider bank 

portfolio. 

 

2. In the Ratings-based Monte Carlo analysis, the wider bank portfolio is assumed to 

consist of 500 BBB-rated loans. The securitisation pool is supposed to comprise either 

200 BB-rated loans or 200 BBB-rated loans. 

 

3. The par value of the exposures in the structured product pool is assumed to equal 7% 

of the par value of the loans making up the wider bank portfolio. The total par of 

tranches is split into 27 tranches as described by Table 2.  

                                                 
8
 Note that, in each case, both the pool assets and the securitisation notes are presumed to have the same 

maturity. 

Category

Percentage 

of total par

Number of 

tranches

Junior tranches 10% 10

Mezzanine tranches 40% 16

Senior tranches 50% 1

Total 100% 27
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4. The interest rate is set to zero for different maturities. This implies that the Jarrow-

Turnbull approach that we employ in recovery modelling is equivalent to the 

‘practitioner approach’ of supposing the recovery is a fraction of par value. 

 

5. The recovery rate is modelled as deterministic (to provide comparability with the 

assumptions in IRBA (and AFA)) and is set at 55%, a value appropriate for large 

corporate loans. 

 

6. The spreads and ratings transition matrix employed in the calculations are shown in a 

data appendix. The spreads are estimated from a large dataset of US corporate bonds. 

Averages of spreads (by maturity and rating) observed weekly in the second quarter 

of 2007 is employed in order to provide a pre-crisis set of values. In a corresponding 

fashion, the rating transition matrix employed is taken from Standard & Poor’s default 

study including data up to 2007. 

 

Capital Calculation Results 
 

The results of the calculations for total capital on- and off-balance-sheet appear in Table 3. 

The on-balance sheet results are in the columns under “Capital for the Pool, and the off-

balance sheet results are in the columns under “Capital for all Tranches”. 

 

Table 3: Total Pool/Securitisation Capital Calculations (2007 data) 

Maturity(

years)

(A1) MC 

Capital for 

pool

(B1) IRBA 

Capital 

(exclude EL) 

= AFA

(C1) IRBA 

Capital 

(include EL) 

= Kirb

(D1) MSFA 

Capital (no 

caps or 

floors)

(A2) MC 

Capital for 

all Tranches 

(B2) AFA 

Capital

(D2) MSFA 

Capital (no 

caps with 

floors)

1 6.48% 6.13% 6.63% 6.63% 5.69% 6.13% 9.68%

2 6.64% 7.15% 7.73% 9.90% 5.25% 7.15% 12.27%

3 6.88% 8.17% 8.84% 12.35% 6.10% 8.17% 14.52%

4 6.96% 9.19% 9.94% 14.65% 6.35% 9.19% 16.69%

5 6.96% 10.21% 11.04% 16.86% 6.05% 10.21% 18.81%

1 3.04% 2.75% 2.86% 2.86% 2.76% 2.75% 5.36%

2 3.20% 3.53% 3.68% 4.38% 2.56% 3.53% 6.85%

3 3.51% 4.32% 4.49% 5.60% 3.12% 4.32% 8.17%

4 3.92% 5.11% 5.31% 6.80% 4.02% 5.11% 9.50%

5 4.39% 5.89% 6.13% 8.04% 4.57% 5.89% 10.84%

BB-rated pool exposures

BBB-rated pool exposures

 
Note: input data includes weekly averaged spreads by rating and maturity for US corporates for 2007 (source 

RCL) and Standard and Poor’s transition matrix (source: Standard & Poor’s (2007)). 

 

Column (A1), labelled “MC Capital for Pool”, shows the capital for the pool assets implied 

by a Monte Carlo calculation. 

 

Column (B1), labelled “IRBA Capital”, shows the capital for the pool assets as defined under 

IRBA. This IRBA measure excludes the Expected Loss. As maturity increases, there is a 

noticeable increase of capital due to the IRBA maturity adjustment. The ratios between the 

entries in the column at different maturities and the 1-year capital number are simply equal to 

the proportional IRBA maturity adjustment. Note that the ratios of the capital numbers for 

maturities 1 and 5 are not equal for BBB and BB pools because the maturity adjustment in 

the IRBA formula depends on default probability of the exposure in question. 
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By construction, the implied AFA capital for the pool yields exactly the same total capital as 

the IRBA Capital, thus inheriting the IRBA’s maturity adjustment. 

 

For a 1-year maturity, the Monte Carlo estimates in column (A1) are close to the IRBA 

capital in column (B1) (6.48% vs. 6.13% for BB and 3.04% vs. 2.75% for BBB) since the 

pool exposures are driven by the latent variables with the same factor structure as that 

assumed in the analytical AFA model. Differences here reflect sampling errors. The Monte 

Carlos are performed with 5 million replications but even so there is likely to be some 

inaccuracy as Monte Carlo estimates of VaRs calculated with a confidence level of 99.9% 

converge relatively slowly. 

 

Column (C1) shows the input of the current SFA formula, which is basically the IRBA 

Capital inclusive of Expected Loss. 

 

Column (D1) shows the capital implied by the MSFA model for the pool assets where the 

calculations are performed exclusive of the regulatory capital caps and floors. 

 

Column (A2), labelled “MC Capital for all Tranches”, shows the sum for all the tranches in 

the securitisation of the UL-based capital implied by the Ratings-based Monte Carlo model. 

Comparing the MC capital for all tranches with the MC capital for pool, one may observe 

that the estimates are reasonably close being, for example, 2.76% and 3.04%, respectively, 

for 1-year-maturity and 4.57% and 4.39%, respectively, for 5-year-maturity securitisations 

with BBB-rated underlying exposures. This shows that apart from sampling error, the total 

capital implied by the two very different Monte Carlo estimations are consistent. This 

observation provides some confirmation that the Longstaff-Schwartz conditional pricing 

function approach that is used in the Monte Carlos for the tranche exposures are performing 

accurately. 

 

Column (B2) shows total AFA capital for all the tranches in the securitisation; the numbers in 

column (B2) are identical to the numbers in column (B1), by construction. 

 

The last column (D2) of Table 3 shows the total capital implied by the MSFA for the 

securitisation as a whole. The calculated results show a much more aggressive sensitivity to 

maturity than the AFA/IRBA numbers imply. 

 

One possible justification of the aggressive maturity adjustment in the MSFA is the notion 

that some mezzanine tranches may suffer deferral of coupon prior to credit events affecting 

the tranche in order to protect the credit quality of more senior tranches in the securitisation.  

 

In our view, this phenomenon should be addressed within the regulatory framework through 

including a specific test on whether sufficient excess interest is available for a tranche and 

whether the cash-flow waterfall rules of the deal permit coupon deferral or not. The current 

approach involves penalising, with no justification that is apparent to us, both mezzanine 

tranches for which coupon deferral is not permitted in the waterfall rules and senior tranches, 

the credit quality of which is actually enhanced by mezzanine or junior tranche coupon 

deferral! 

 

Moreover, a comparison between the numbers in columns (D1) and (D2) shows the 

disproportionate effect of the fixed floor in the MSFA as currently calibrated when compared 
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to the overall amount of capital for the pool (9.68% vs. 6.63% for BB and 5.36% vs. 2.86% 

for BBB for 1-year maturity). 

 

The key result that emerges from an examination of Table 3 is that the IRBA maturity 

adjustments are relatively conservative. While the 1-year-maturity total capital results are 

similar (as, theoretically, they should be) across the three cases of AFA/IRBA, MC Capital 

for Pool and MC Capital for all Tranches. For the 5-year-maturity exposures, the AFA/IRBA 

results are higher for the BBB-rated pool exposure case and very much higher indeed when 

BB-rated pool exposures are assumed. 

 

 

SECTION 6 – MATURITY AND TRANCHE CAPITAL DISPERSION 

Figure 1: Marginal VaRs for tranches (with BB-rated pool exposures)
9
 

 

Capital Level and Dispersion 

In this section, we examine how capital should be dispersed or allocated across tranches of 

different seniorities in a securitisation. The AFA has the important advantage that the sum of 

the capital it implies for all the tranches in a securitisation equals the capital that a bank must 

hold if it invests in the pool assets directly. The AFA is capital neutral in this sense whatever 

the maturity of the securitisation. 

 

                                                 
9
 In interpreting the figure, note that the MVaRs are plotted vertically above their attachment points and that 

both Monte Carlo and AFA calculations of MVaRs make explicit allowance for the fact that the tranches are 
discretely thick in that both attachment and detachment points are taken account of in calculating the risk 
statistics. 
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Being aligned with the IRBA for total capital does not necessarily imply, however, that the 

dispersion or allocation of capital across tranches of differing seniority implied by the use of 

a fixed value of *  in the AFA is appropriate. Furthermore, one might enquire whether 

adjustments should be made to the default probability used as input to the AFA. 

 

We address these questions in this section (i) by calculating using the Longstaff-Schwartz 

ratings-based Monte Carlo model the appropriate UL-based capital for different tranches in 

our stylised securitisation deal and then (ii) by comparing the implied dispersion with that 

implied by the AFA with its inputs adjusted in different ways. 

 

Figure 2: Unexpected Losses for different tranches (with BB-rated pool exposures) 

 

Before looking at long-lived deals, we verify (see Figure 1) that the Ratings-based Monte 

Carlo model yields accurate estimates of the capital of different tranches for a 1-year maturity 

securitisation. The figure shows the theoretical Marginal VaRs (MVaRs) for the different 

tranches based on the AFA and the corresponding Monte Carlo estimates.
10

 

 

To show how the dispersion of capital varies as maturity increases, in Figure 2, we show the 

Unexpected Losses (ULs) for individual tranches plotted against their attachment points for 

different maturities. The ULs exhibit marked and increasing dispersion across the tranches as 

the maturity increases. 

  

                                                 
10

 Clearly, when implemented for a 1-period horizon, the two models are identical mathematically so that the 

only source of discrepancy between the capital implied by the two is sampling error in the Monte Carlo. Figure 

1 is therefore reassuring that the two models are correctly aligned and illustrates the extent of the sampling error 

in a Monte Carlo with 5 million replications. 
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Table 4: Adjusted PD and AFA capital calculation for a BB-rated pool 

Maturity PD SPD AFA UL Kirb(exclusive EL)

1 1.11% 14.73% 6.13% 6.13%

2 2.72% 18.61% 7.15% 7.15%

3 4.70% 22.85% 8.17% 8.17%

4 6.92% 27.34% 9.19% 9.19%

5 9.29% 31.98% 10.21% 10.21%

1 1.11% 14.73% 6.13% 6.13%

2 3.62% 19.51% 7.15% 7.15%

3 7.04% 25.19% 8.17% 8.17%

4 11.47% 31.89% 9.19% 9.19%

5 16.63% 39.33% 10.21% 10.21%

one-year historical PD + risk adjusted PD for 2, 3, 4 and 5 years

historical PD

 
 

Table 5: Adjusted PD and AFA capital calculation for a BBB-rated pool 

Maturity PD SPD AFA UL Kirb(exclusive EL)

1 0.25% 6.35% 2.75% 2.75%

2 0.61% 8.46% 3.53% 3.53%

3 1.08% 10.68% 4.32% 4.32%

4 1.66% 13.01% 5.11% 5.11%

5 2.34% 15.43% 5.89% 5.89%

1 0.25% 6.35% 2.75% 2.75%

2 2.09% 9.94% 3.53% 3.53%

3 4.03% 13.63% 4.32% 4.32%

4 6.15% 17.50% 5.11% 5.11%

5 8.52% 21.61% 5.89% 5.89%

historical PD

one-year historical PD + risk adjusted PD for 2, 3, 4 and 5 years

 
 

Calculation Results 
 

Here, we present calculations of capital based on the Ratings-based Monte Carlo approach 

and on the AFA inclusive of maturity adjustments as described in the last section.  

 

The Ratings-based Monte Carlo model follows a ratings-based approach in which the ratings 

of individual loans evolve as correlated Markov chains. If there are J ratings categories, for a 

given initial rating, i, the M-period default probability equals the (i,J)th element in the M-fold 

product of the rating transition matrix. 

 

The Ratings-based Monte Carlo model also includes risk-adjusted distributions for ratings 

transitions in that it is assumed that on a risk-adjusted basis, a given loan rating evolves also 

as a Markov chain with a time-homogeneous rating transition matrix. This latter matrix is 

derived (though a least square fitting technique) from a cross-section (i.e., values observed on 

a given date) of corporate bond spreads for different ratings and maturities. 

 

In order to maintain consistency between the Ratings-based Monte Carlo model and the AFA, 

we derive the MPD  not directly from an application of equation (3) but by taking for a rating 
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i the (i,J) element of the product of the historical transition matrix employed in the Ratings-

based Monte Carlo model with the (M-1) fold product of the risk adjusted transition matrix 

also employed in the Ratings-based Monte Carlo model.
11

 

 

To maintain capital neutrality as discussed above, the stressed default probability is 

calculated as: MIRBM PDLGDKPD  /,  (where IRBK  is exclusive of Expected Losses) and 

the maturity adjustment for stressed iPool  is given by equation (5) with 1.0*  . 

 

Table 4 and 5 show the total AFA capital calculated for BB and BBB-rated pools 

respectively. In each case, capital is shown for different maturities. The total capital equals 

IRBK  as this approach is capital neutral. As explained above, the default probabilities, MP , are 

based on historical distributions for the first year and risk neutral distribution (extracted from 

spreads) for the subsequent M-1 periods. The tables show the implied stressed default 

probabilities that maintain capital neutrality, MPD , . 

 

Figure 3 presents the comparison of unexpected losses for thin tranches with a BB-rated 

underlying pool. Figure 3 shows the distribution of capital for different tranches using as 

default probability the combination of M-maturity historical and risk adjusted probabilities 

described above. 

 

Figure 4 present the unexpected losses for senior tranches with attachment points equal to 

those of the thin tranches for which results are shown in Figure 3. These ‘senior tranche’ 

results are calculated by aggregating the capital for tranches to the right of any given 

attachment point. For any given attachment point, they, therefore, show the capital associated 

with a tranche from that point through to a detachment point equal to 100% of the par value. 

 

Note that the discussion in this paper focusses primarily on corporate securitisations for 

which there is an explicit maturity adjustment in the Basel II IRBA rules. Retail lending 

under IRBA is not subject to maturity adjustment, however.  

 

Apart from residential mortgages, this appropriately reflects the fact that such loans are 

generally short maturity. In the case of residential mortgages, the IRBA rules implicitly allow 

of maturity by adopting, in the capital charge formulae, an asset correlation parameter of 15% 

which is markedly higher than any empirical investigation of mortgage loan default is likely 

to yield. 

 

In our view, it is helpful to maintain neutrality of on- and off-balance sheet loan holdings so 

we would not advocate the use of explicit maturity adjustments in the KIRB for mortgage 

loans. However, just as for corporate-loan-based securitisations, we believe the dispersion of 

capital across tranches should reflect maturity and hence we would suggest use of the boosted 

  
   parameters described above. 

                                                 
11

 This approach is consistent with the requirements of equation (13, that one employ distributions based on 

historical distributions in the first period and distributions inclusive of risk premiums in subsequent periods.  
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Figure 3: Thin tranche unexpected losses (one-year historical PD + risk adjusted PD for 2, 3, 4 and 5 years) 
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Figure 4: Thick Senior tranche unexpected losses (one-year historical PD + risk adjusted PD for 2, 3, 4 and 5 years) 
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SECTION 7 – RECONCILING AFA AND MC CAPITAL 

From equation (13), it is apparent that capital from different models should be aligned so long 

as the hold-to-maturity loss distributions are aligned. The loss distributions should be 

calculated inclusive of a risk premium from periods 2 to maturity and conditional on a stress 

event affecting the bank’s wider portfolio. 

 

In our calculations of capital, we obtain exact alignment of Monte Carlo and AFA-based 

capital calculations and reasonably close alignment for longer maturities. To examine the 

consistency of AFA and the Monte Carlo models, we may make two further adjustments. 

 

First, the AFA calculations take as input IRBK , the on-balance sheet capital under Basel II 

rules. This capital includes a maturity adjustment in pool capital that does not necessarily 

agree with the impact of maturity on pool capital implied by the Ratings-based Monte Carlo 

model. 

 

To adjust for this difference, we may use as input to the AFA the total pool capital implied by 

the Ratings-based Monte Carlo model. This may be achieved simply by using as stressed 

default probability, MPD , , the following quantities: LGDELMCULMCPD M /)(,  . 

 

Second, the adjustment in correlations made in the AFA as described in the current paper 

comes from a simple multi-period Merton model. In this model, defaults only occur at the 

end of the maturity horizon. Ratings style models (and indeed genuinely multi-period Merton 

models) allow for defaults at intermediate points in time between the initial date and the final 

maturity.  

 

It is well known among credit risk modellers that factor correlations behave differently in 

single- and multi-period models and that adjustments must be made to reconcile the two. The 

following steps are designed to effect reconciliation. Assuming a given correlation structure, 

we simulate a ratings-based Monte Carlo model with pairs of exposures until a final maturity. 

We then calculate the correlation of default events for those exposures and finally infer the 

asset correlation within a notional one-period model that would generate this degree of 

default correlation. 

 

More precisely, to infer the correlations from MC simulated capital, consider two portfolios 

of M year exposures like the ones we are considering except suppose the recovery rate is zero 

and the par value is 1. Portfolio 1 consists of 2 BB-rated SPV pool exposures. Portfolio 2 

consists of 2 BB-rated bank exposures. We calculate via a Monte Carlo the variances of the 

return on these two portfolios. We then infer from the following equations (for portfolios 

k=1,2) the pairwise correlations of loans in the pool with each other and with loans in the 

bank portfolio, denoted 1,D  and 2,D . 

 

 

 211212 , kfor)-PD ( PD ρ) + -PD ( PDk) = ortfolio Variance(P BBBBD,kBBBB   (21) 

 

Here, BBPD  is the M year cumulative default probability for a BB-rated loan. From these 

default correlations, one may infer the asset correlations: kA, , for k=1,2, using the fact that: 
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21
1

2

2

, , kfor
)PD(PD

PDρ|,PDPDN

BBBB

BBA,kBBBB

kD 



  (22) 

 

Here, 1,A  is the correlation between pool exposures (
Pool ) and 2,A  is the correlation 

between the bank exposures (  ). From the MC inferred 
Pool  and  , we can calculate *  

and *

M  using the relations: 

 

 

11

)1()1(

1

*
*

*











M

M Pool
M

Pool











 (23) 

 

Table 6: Monte Carlo Inferred Correlations 

maturity rho_asset_p1 rho_asset_p2 rho_star rho_star_M

1 0.2693 0.1900 0.0979 0.0979

2 0.2267 0.1535 0.0866 0.1625

3 0.2104 0.1422 0.0796 0.1712

4 0.1963 0.1321 0.0739 0.1688

5 0.1871 0.1256 0.0704 0.1662

1 0.2798 0.2233 0.0727 0.0727

2 0.2506 0.1672 0.1002 0.1823

3 0.2428 0.1794 0.0773 0.1946

4 0.2225 0.1555 0.0794 0.1911

5 0.2164 0.1591 0.0682 0.1907

BB-rated pool

BBB-rated pool

 
 

The correlations inferred from MC capital after the adjustments just described are given in 

Table 6. Table 6 also includes the results of calculations as just described but for BBB-rated 

securitisation pool assets. 

 

Table 7: AFA correlation parameters 

rho_pool rho rho_star

AFA correlation 

parameters 0.27 0.1889 0.1

AFA correlation 

parameters 0.3035 0.2261 0.1

BBB-rated pool

BB-rated pool
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Table 8: AFA capital calculated using MC inferred correlations 

Maturity MC UL MC EL MC capital PD SPD AFA UL

1 0.0569 0.0050 0.0619 0.0111 0.1376 0.0569

2 0.0525 0.0323 0.0849 0.0718 0.1887 0.0525

3 0.0610 0.0684 0.1294 0.1520 0.2876 0.0610

4 0.0635 0.1106 0.1741 0.2458 0.3869 0.0635

5 0.0605 0.1543 0.2148 0.3429 0.4773 0.0605

1 0.0276 0.0011 0.0287 0.0025 0.0638 0.0276

2 0.0256 0.0241 0.0497 0.0536 0.1104 0.0256

3 0.0312 0.0470 0.0782 0.1043 0.1737 0.0312

4 0.0402 0.0705 0.1106 0.1566 0.2459 0.0402

5 0.0457 0.0946 0.1404 0.2103 0.3119 0.0457

BB-rated pool

BBB-rated pool

 
Note: here, MC capital = MC UL + MC EL 

 

Figure 5: MC and AFA UL for BB-rated pool assets

 
 

For comparison purposes, the correlation parameters used in AFA calculation are given in 

Table 7. Using the MC inferred correlation parameters from Table 6 in AFA plus making the 

first adjustment described above of aligning total deal capital, we obtain the results as shown 

in Table 8 and Figures 5 and 6.
12

 Figure 5 shows the comparisons between MC and AFA UL 

of thin tranches for a pool of BB-rated loans. Figure 6 shows the same comparisons for BBB-

rated pool assets.  

 

                                                 
12

 Here, AFA UL is calculated by substituting the MC implied PD, SPD, Pool  and 
*

M  into the AFA formula. 
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Both Figures 5 and 6 show close correspondence between the AA and the Monte Carlo 

results. In other results base on CCC-rated pool assets, omitted to save space, a similar good 

correspondence was found. 

 

Figure 6: MC and AFA UL for BBB-rated pool assets

 
 

 

SECTION 8 - CONCLUSION 

This paper has analysed capital for securitisations for different maturities. In particular, we 

show how the total capital and the dispersion of capital across tranches of different seniorities 

is affected by maturity.  

 

In the process, we have developed a rigorous, closed-form, multi-period model for 

securitisation capital and demonstrated that it is equivalent to the Arbitage Free Approach 

(AFA) of Duponcheele et al (2013a) with inputs adjusted for maturity. Our approach is fully 

consistent with both the AFA and the Simplified AFA (SAFA) proposed by Duponcheele et 

al (2013b). 

 

Compared with the models proposed by the Basel Committee in its consultative document of 

December 2012 (BCBS (2012)), the model we propose has the important advantage of 

preserving neutrality of total securitisation capital with the IRBA capital charges required of 

a bank if it holds the pool exposures directly on balance sheet. 
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APPENDIX 1: STATISTICAL DATA INPUTS  

Table A1: RCL all obligor spreads (2007 April – June) 

1 2 3 4 5

AAA 0.338 0.373 0.408 0.444 0.481

AA 0.467 0.495 0.531 0.569 0.610

A 0.530 0.586 0.635 0.683 0.732

BBB 0.920 0.932 0.963 1.010 1.070

BB 1.213 1.445 1.728 1.999 2.233

B 1.880 2.480 2.869 3.119 3.273

CCC 4.963 4.828 4.694 4.561 4.430  
Source: RCL calculations. Spreads are shown in percent by rating and maturity in years. 

 

 

Table A2: Rating transition probabilities extracted from S&P data 1981-2007 
AAA AA A BBB BB B Cs default

AAA 91.39% 7.95% 0.47% 0.09% 0.09% 0.00% 0.00% 0.00%

AA 0.62% 90.99% 7.62% 0.56% 0.06% 0.10% 0.02% 0.01%

A 0.04% 2.17% 91.49% 5.62% 0.41% 0.17% 0.03% 0.06%

BBB 0.01% 0.18% 4.24% 90.07% 4.31% 0.77% 0.17% 0.25%

BB 0.02% 0.06% 0.23% 5.90% 83.88% 7.93% 0.87% 1.11%

B 0.00% 0.06% 0.18% 0.32% 6.73% 83.01% 4.50% 5.20%

Cs 0.00% 0.00% 0.28% 0.42% 1.18% 13.60% 54.88% 29.64%

default 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%  
Source: Standard and Poor’s (2008). 

 

 

Table A3: Spreads Reverse Engineered from the MSFA Formula 

 
Source: the author’s calculations. Spreads are shown in percent by rating and maturity in years. 

  

1 2 3 4 5

AAA 0.005 0.140 0.400 0.650 0.848

AA 0.019 0.278 0.635 0.922 1.124

A 0.036 0.388 0.796 1.094 1.291

BBB 0.114 0.696 1.181 1.475 1.641

BB 0.373 1.272 1.768 1.993 2.081

B 1.565 2.670 2.911 2.887 2.782

CCC 9.118 7.467 6.194 5.296 4.638
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APPENDIX 2: RATINGS-BASED MODELLING METHODOLOGY 

Individual Exposures and Their Ratings Histories 
 

In this section, we describe our approach to simulating dependent changes in the credit quality of simple 

exposures like bonds and loans. The exposition follows that of Lamb, Peretyatkin and Perraudin (2005). 

Consider a set of I such exposures denoted i=1,2,..,I. Suppose that, at date t, exposure i has a rating, Rit, which 

can take one of K values, 1,2,…,K. Here, K corresponds to default, while state 1 indicates the highest credit 

quality category. 

 

Since we wish both to price and to study the dynamics of ratings, we must distinguish between actual and risk-

adjusted distributions of ratings changes. Assume that under both actual and risk-adjusted probability measures, 

the rating Rit evolves as a time-homogeneous Markov chain. 

 

The actual and risk-adjusted KK   transition matrices are denoted: M and M
*
 respectively. The ),( ji -

elements of M and 
*M are 

jim ,
 and 

*

, jim  respectively. Let 
,, jim  and 

*

,, jim  denote the ),( ji -elements of the 

-fold products of the matrices M and 
*M , i.e., 

M and
)( *M . 

 

The actual transition matrix, M may be estimated from historical data on bond ratings transitions. We employ as 

our estimate the Standard and Poor's historical, all-issuer transition matrices for the relevant sample period. 

 

The risk-adjusted transition matrix 
*M may be deduced from bond market prices, in particular, from spread 

data on notional pure discount bonds with given ratings. To see how one may achieve this, note that if credit risk 

and interest rate risk are independent and spreads only reflect credit risk (i.e., there are no tax or liquidity 

effects), the  -maturity spread on a pure discount bond with initial rating i, denoted
)(iS
, satisfies: 

    *

,,

*

,,

)( 1exp   KiKi

i mmS   (A1) 

Here,  is the expected recovery rate in the event of default. 

 

Let dT  ,...,, 21  denote a set of integer-year maturities. To infer the risk-adjusted matrix, we may choose 

*

, jim  for 1,...,2,1,  Kji  and T  to minimize: 

      







T

K

i

KiKi

i

m

mmS
ji 

 
1

1

2*

,,

*

,,

)( 1expmin
*
,

 (A2) 

Here, note that the 
*

,, Kim are implicitly functions of the
*

, jim .
13

 

 

In performing this calculation, we assume that the recovery rate is 50% and that the maturities in are 1, 2, 3, 4, 

5, 6, 7, and 8 years. The spread data we employ are time averages of pure discount bond spreads calculated by 

Bloomberg based on price quotes for bonds of different ratings and maturities issued by industrial borrowers 

(see Table 2). The risk-adjusted transition matrix obtained in this way is given in Table 1. 

Bond Ratings Histories and Values 

The last section describes a theoretically consistent set of actual and risk-adjusted distributions governing the 

dynamics of ratings for our set of I exposures. Now consider how one may simulate changes in ratings building 

in dependence between ratings changes for different obligors. 

 

We employ the ordered probit approach widely used in ratings-based portfolio credit risk models. For any row 

of M (say the jth row), one may deduce a set of cutoff points 
kjZ ,

 for k=1,2,…,K-1 by recursively solving the 

equations: 

                                                 
13 Note that in performing the optimisation, we attach penalties to the objective function if entries in the transition matrix become 
negative in the course of minimisation. This ensures the resulting risk-adjusted matrix is well-behaved. 
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1,1,
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

KjKj

jjj

jj

Zm

ZZm

Zm


 (A3) 

Here, (.)  is the standard normal cumulative distribution function. Doing this, we obtain a set of ordered cut 

off points
1,2,1, ...  Kjjj ZZZ . 

 

Given an initial rating j, to simulate a change in the rating from t to t+1 for exposure i, we draw a random 

variable
1, tiX . If 

kjtikj ZXZ ,1,1,  
 (where by convention 1,jZ and KjZ ,

), exposure i's rating 

at t+1 is k. 

 

The latent variables
tiX ,
that determine changes in ratings are assumed to be standard normal random variables. 

To include dependency between the ratings changes of different exposures, assume that the
tiX ,
, for the 

exposures i=1,2,…,I, possess a factor structure, in that: 

 



J

j

tiitjjiiti fX
1

,,,

2

, 1   (A4) 

Here, the
tjf ,
are factors common to the latent variables associated with the different credit exposures and the 

ti ,  are idiosyncratic shocks. The 
tjf ,
and the 

ti ,  are standard normal and the weights 
ji ,  are chosen so that 

the sum over j of the factor components, 
tjji f ,, , is also standard normal. Note that, in our implementation of 

this approach for the evaluation of Monte Carlo-based capital as described in the main body of the paper, we 

choose the ji , and i  parameters to replicate the factor structure of the AFA model. 

 

If one knows the risk-adjusted probabilities of default for individual exposures and assumes that defaults, 

recovery rates and shocks to interest rates are independent, the valuation of individual exposures at some future 

date conditional on ratings is straightforward. For example, under these assumptions, the price 
RtV ,

of a 

defaultable fixed rate bond with initial rating R, coupons c, and principal Q is:  

         *

,,

*

,,,

1

*

,,

*

,,,, 1exp1exp NKRNKRNtt

N

i

iKRiKRittRt mmNrQmmircV   




(A5) 

Here, 
ittr ,
is the i-period interest rate at date t. It is simple to derive pricing expressions for floating rate loans 

and many other exposures including Credit Default Swaps (CDS), guarantees, letters of credit etc, under these 

assumptions as well. 

 

Drawing together the various elements described above, one may simulate dependent ratings histories for all I 

exposures. The steps involved are: 

 

1. Draw the 
tf.,

 and 
ti ,  and calculate the latent variables for each exposure and each period using 

equation (A4). 

 

2. Deduce the time path followed by the ratings by comparing the latent variable realizations with the cut-

off point intervals
kjtikj ZXZ ,1,1,  

. 

 

3. Conditional on the rating at the chosen future date, price the I exposures. 

 

4. Repeat the exercise many times to build up a data set of value and rating realizations. 

  



 

30 | P a g e  

 

Conditional Pricing Functions 

The payoff on a structured exposure depends in a complex way on the performance of the pool of underlying 

exposures, typically bonds or loans. It is apparent from the above how one may simulate the values of the 

individual exposures in the pool. To analyze risk for a structured exposure, however, one must be able to 

simulate its price which is clearly much more complicated. 

 

To put the task in context, one might consider simulating the underlying exposures up to the horizon of interest 

and then by simulating repeatedly from that date on, price the exposure at the VaR horizon through a Monte 

Carlo. This effectively amounts to performing a pricing Monte Carlo for each replication of the initial Monte 

Carlo. But, this approach is clearly infeasible however since it is computationally too costly. 

 

Our alternative approach, which is much more efficient computationally, consists of performing an initial 

valuation Monte Carlo (denoted Monte Carlo 1) that serves to estimate conditional pricing functions. These 

pricing functions are then used in a second risk management Monte Carlo (denoted Monte Carlo 2) in which we 

deduce risk measures like Value at Risk. 

 

To describe more precisely Monte Carlo 1 and the pricing functions it yields, consider, as before, a set of credit 

exposures, i=1,2,…,I with ratings histories 
tiR ,
for t=0,1,…,T where T is the maturity date of the CDO. 

 

For a given structure, we define the cash flow waterfall to be a set of rules that, conditional on the evolution of 

ratings 
tiR ,
, determine the cash flows for t=0,1,…,T and i=1,2,…,I for each tranche in the structure.

 14
 

 

The waterfall rules may be described formally by a set of functions for dates t=0,1,2,…,T that map the ratings 

histories up to t into cash flows on the individual tranches, j=1,2,…,J, at that date: 

 

   IitRFc itjtj ,...,2,1;,...,2,1,0;,,,    (A6) 

 

To estimate the pricing functions, we follow the steps: 

 

1. Simulate correlated ratings histories starting from the initial values at t=0 to the terminal date T. This 

simulation is performed using the ordered probit method described above but with the risk adjusted 

transition matrix, M
*
, rather than the actual matrix, M. 

 

2. Repeat the simulation M times. If 
)(

,

m

tjc is the cash flow in period t on tranche j in the mth simulation, 

we can define the summed discounted cash flow at date 1t  (where Tt  10 ) on tranche j and for 

replication m, denoted 
)(

,, 1

m

tjtDCF , as: 

 
itt

T

ti

m

ij

m

tjt PcDCF ,,

1

)(

,

)(

,, 1

1

1 


  (A7) 

Here, 
ittP ,, 1
 is the forward discount factor at date t for discounting a cash flow at date i back to date 1t . 

The quantity 
)(

,, 1

m

tjtDCF  in the above equation is the cash flow on a given tranche from s onwards dis-

counted back to that date using forward interest rates implied by the term structure at the initial date t. 

 

3. We wish to obtain pricing functions for the tranches conditional on information at date 1t . To represent 

that information, we define a set of S statistics 
)(

,1

m

sth  (indexed s=1,2,…,S) of the individual obligor 

ratings 
,iR  up to the date 1t : 

 

                                                 
14

 The cash flows may depend on a set of K other state variables (for example, interest rates or exchange rates) 
that we denote S(k,t)for k=1,2,…,K. The may be introduced into the pricing functions without problem but we 
omit them here to simplify the notation. 
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SsIitRHh ist

m

st ,...,2,1}),...,2,1;,...,1,0;({ ,,

)(

, 11
   (A8) 

 

The superscript m shows that statistic s is observed in simulation m. In principal, there are many 

variables observable at 1t  that one might expect would affect cash flows on the tranches subsequent to 

that date. A good example is the fraction of pool value in each of the rating categories at date 1t . Such 

fractions are likely to be associated with systematically high or low outcomes for the subsequent cash 

flows on the tranches. 

 

4. To derive a pricing function, we regress the discounted, summed cash flows 
)(

,, 1

m

tjtDCF  on the 

information variables, 
)(

,1

m

sth . (The regression function we employ is more complicated than a simple 

linear regression. We discuss the regression we use in the next subsection.) 

 

To understand why this yields a pricing function, suppose that 01 t  and one performed a simple 

linear regression on a unit constant. This would be the same as averaging the discounted cash flows 
)(

,, 1

m

tjtDCF  over m. Given that the simulations have been performed using risk neutral distributions, this 

would yield an estimate of the price of the tranche at date 0 since we would simply be conducting a risk 

neutral Monte Carlo valuation of the claim. 

 

By regressing the discounted summed cash flows, simulated using risk neutral distributions on the 

information variables, we obtain a conditional pricing model. Evaluating the regression function at 

given levels of the information variables yields the prices of the tranche when the information variables 

take the values specified. 

 

Estimating Conditional Prices 

We described above how we derive a conditional pricing function by regressing the summed, discounted cash 

flows on the information variables but were unspecific about what form the regression should take. In this 

subsection, we discuss for the form of the regression that it is advisable given the nature of payoffs on tranches. 

 

In general, the regression model one employs should reflect the stochastic behavior of discounted payoffs on 

that tranche. Consider the density of discounted payoffs on a given tranche. A low credit quality tranche is likely 

to have an atom of probability associated with a zero payoff. A very senior tranche may have an atom associated 

with full repayment (although even a senior tranche may have a state dependent payoff if poor performance of 

the pool triggers early substantial amortization). A mezzanine tranche may have atoms associated with zero 

payoffs and another associated with full repayment. 

 

In light of this, we use different regression functions for different tranches depending on the number of 

replications in the Monte Carlo 1 for which the tranche in question either (a) defaults or (b) returns a zero 

discounted payoff. We say that a tranche “defaults” if it pays less than the maximum contractual amount by the 

maturity date of the structure. (If a coupon payment is missed before this maturity date, the unpaid coupon is 

added to principal. A tranche is said to default if the full principal including unpaid coupons added to principal 

during the life of the structure cannot be fully paid at the maturity date.) 

 

To be specific, a tranche is allocated to one of the following types of regressions depending upon its default 

behavior. 

 

1. Equity Tranche: A tranche is treated as an equity tranche if it is the most junior tranche in the 

structure or if it defaults more than0.5% of the time. Equity tranches are valued using a linear 

regression of the discounted future payoff on the state variables. So the valuation expression is: 

 
tXvalueEquity 

 (A9) 

Here,   is a vector of regression coefficients and tX is a row vector of state variables. 
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2. Senior Mezzanine Variable Tranche: A tranche is treated as a mezzanine variable tranche if it 

defaults more than 0.05% of the time and more than 10% of payoffs observations in the Monte Carlo 

differ from the payoff in the previous replication. The pricing expression is: 
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Here, 1  is a vector parameter values for a logit model of the dummy variable that, for a given Monte 

Carlo replication, equals unity if the tranche defaults in the sense that it has a zero discounted payoff 

and otherwise is zero. The logit model is estimated by Maximum Likelihood. 2tX  is the fitted value 

from an ordinary least squares regression of the discounted tranche payoffs on the state variables, tX , 

conditional on a default (in the sense just given) having occurred. 3tt Xd  is the fitted value from a 

linear regression of the discounted tranche payoffs on tt Xd  conditional on no default where td is the 

outstanding par at the time of valuation. 

 

3. Senior Mezzanine Constant Tranche: A tranche is treated as a mezzanine variable tranche if it 

defaults more than 0.05% of the time and less than 10% of payoffs observations in the Monte Carlo 

differ from the payoff in the previous replication. The pricing expression is:  
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Here, 1 is a vector parameter values for a logit model of the dummy variable that, for a given Monte 

Carlo replication, equals unity if the tranche defaults in the sense that it has a zero discounted payoff 

and otherwise is zero. The logit model is estimated by Maximum Likelihood. 2tX  is the fitted value 

from an ordinary least squares regression of the discounted tranche payoffs on the state variables, tX , 

conditional on a default having occurred. 
0,3  is mean of the discounted tranche payoffs conditional 

on no default. 

 

4. Senior Variable Tranche: A tranche is treated as senior variable if it defaults less than 0.05% of the 

time and discounted payoffs in successive Monte Carlo replications differ more than 10% of the time. 

Such tranches are valued as:  

 
tt XdvaluevariableSenior 

 (A12) 

Here, tt Xd is the fitted value from a regression of the discounted payoff on tt Xd . 

 

5. Senior Constant Tranche: A tranche is treated as senior constant if it defaults less than 0.05% of the 

time and discounted payoffs in successive Monte Carlo replications differ on fewer than 10% of 

occasions. Such tranches are valued as: 

 0valuevariableSenior
 (A13) 

Here, 0  is the mean discounted payoff. 

 

An important issue is: what “state”' or ``explanatory'' variables should be included in the statistical pricing 

models? Examples of statistics that one may sensibly choose for the 
)(

, 1

m

tkS  are the fractions of the value of the 

pool in different rating categories and interest rate levels for different maturities and exchange rates. If the 

model is simulated without interest and exchange rate risk, then the ratings fractions alone may be used. 
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APPENDIX 3: MATURITY AND CONCENTRATION CORRELATION 
 

A3-1 Brownian and Gaussian variables with the concentration correlation    
 

The credit quality of individual loans is driven by latent variables describing the underlying values of 

the borrowers’ assets,      . We suppose that: 

 

      √      √   √ 
    √   √   

      (A3.1) 

 

Here,     ,   ,      are the levels of standard Brownian motions (with   ,   ,      all equal to zero) and, 

hence, have discrete time increments that are normally distributed and serially independent.      is the 

single common factor driving the credit quality of the bank’s wider portfolio while    is another 

common factor orthogonal to     .      is a factor idiosyncratic to the ith borrower. 

 

The ith loan defaults if the Gaussian latent variable      falls below a threshold level    . The 

probability of default of the ith loan at maturity   is then given by: 

 

   









M

c
NcZPD M
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Here, (.)N  is the cumulative density function of a standard normal distribution. 

 

A3-2 Portfolio losses conditional on factors         

 

Like Vasicek (2002), consider a homogeneous portfolio of   loans in equal size and loss-given-

default    . Then, the total loss on the portfolio assuming a par value of unity is defined by: 
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Here,  { } is the indicator function. 

 

The portfolio loss when par value is unity, conditional on      and   , is given by: 

 

 
   MMBMMi

n

i XYcZMMBMMB XYcZLGD
n

LGDXYLXYL
MMBMMi

,|1
1

,|),( ,,1 ,|,, ,,
   

 (A3.4) 

 

From (A3.1), we can have that: 
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In summary, the total portfolio loss when par value equals unity, conditional on      and   , is given 

by: 
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A3-3 Portfolio losses conditional on factors        

 

In what follows, we shall wish to condition on a stress event affecting the bank’s portfolio factor in 

the period from 0 to date  . This motivates an adjustment in the conditioning just described. Suppose 

that the maturity date   of the loan exceeds the VaR horizon  . In Basel regulations this horizon is 

one year (   ). 
 

By splitting the level of the Brownian motion at date   as follows: HBMBHBMB YYYY ,,,,  , we can 

rewrite equation (A3.6) as: 
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By defining   as a standard normal Gaussian random variable, in law, we have the following 

relation: 
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A3-4 Value at Risk of the portfolio loss:      (   ) 
 

The Marginal Value at Risk of the portfolio at the bank’s  -quantile is the expectation of the 

conditional loss at a confidence interval of )(1

1,  NYB : 
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By defining  (   )  
   (  ( ))√  √     ( )

√ (   )(    )
 and  (   )   

√(   )   (   )  

√ (   )(    )
, we can 

simplify to: 

      (   )       [ ( (   )   (   )  )] (A3.11)  
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Using the property of Gaussian random variables:  [ (     )]   (
 

√    
), we have: 
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A3-5 Stressed portfolio losses conditional on the factor:   

 

Define the stressed default probability at horizon   as MPD , . This represents probability of default 

of an individual pool asset conditional on the bank stress event, )(1

1,  NYB . 
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From line 2 of equation (A3.12), we have the result that: 
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The stressed portfolio loss conditional on the factor W  becomes: 
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Since W  is Gaussian, one may obtain a distribution function for losses with the appropriate 

conditioning on the bank stress event by inverting the last equation to obtain W  as a function of L
and then substitute this function of L  in the standard Gaussian cumulative distribution function. 

 

The stressed pairwise correlation between exposures in the pool is: 
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When the VaR horizon is one period (   ), the stressed correlation is: 
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Here,         (   ) 
 . When    , **  M

. This is the result obtained in Duponcheele et 

al (2013a) for the Basel VaR horizon of unity. When    , 
poolM  * . 

 


