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Abstract 

 

This paper examines the effects of granularity and heterogeneity on capital requirements for 

securitisation transactions. For securitisation portfolios exhibiting a low number of obligors, a 

granularity adjustment to the Arbitrage Free Approach (AFA) (proposed by Duponcheele et 

al (2013a)) is derived in detail. 

 

The adjustment is based on a second-order moment matching of the loss distribution under 

the Vasicek approximation. Capital based on the AFA inclusive of granularity adjustments is 

compared with the capital implied by a Monte Carlo model. 

 

Similarly, for securitisation possessing heterogeneous pools (including barbell deals), the 

tranche capital implied by the AFA is compared with that obtained using a Monte Carlo 

model. 

 

We conclude (i) that a simple version of the AFA, using pool level parameters, supplies 

accurate capital estimates even for extreme barbell deals, (ii) that the AFA, inclusive of 

granularity adjustments in the correlation, gives accurate capital measures for all except the 

few securitisation deals that have pools with fewer than 10 effective assets, and (iii) that for 

such deals, the AFA, inclusive of granularity adjustments to both the correlation and the loss-

given-default rates gives a capital distribution that is compatible with the situation in which 

recovery rates of individual assets are stochastic. 
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SECTION 1 – INTRODUCTION 

The Arbitrage Free Approach (AFA) and Simplified Arbitrage Free Approach (SAFA) are 

detailed in Duponcheele et al. (2013a) and (2013b). Both are based on the Vasicek 

approximation for portfolio losses, as derived by Vasicek (2002). The simple Vasicek 

approximation is derived for homogeneous and infinitely grained portfolios. The 

approximation is the limiting distribution, which converges by the weak law of large numbers 

as the number of homogeneous obligors becomes arbitrarily large. 

 

For the majority of underlying securitisation asset classes, particularly those with underlying 

retail exposures such as mortgages, consumer loans etc., the portfolio is granular enough for 

convergence of the approximation to hold without any adjustments. However, other types of 

securitisations with a lower number of distinct obligors, for example CMBS and some CLO 

securitisations, need special attention to compensate for the resultant lack of complete 

convergence of the approximation. 

 

For non-granular portfolios, Vasicek (2002) proposes a granularity adjustment. This 

adjustment considers the non-zero second moment of the loss distribution, and uses second-

order moment matching to the granular case to arrive at a simple additive adjustment to the 

correlation. Since the moment matching does not consider higher order moments, and the 

matching of the second moment itself requires a further approximation
3
, it is prudent to 

question how accurate the method is for realistic cases. 

 

In its simplest form, the AFA is derived for securitisations possessing homogeneous pools of 

loans. A simple way of generalising the model to heterogeneous pools consists of calculating 

pool level inputs which are port-folio-share-weighted equivalents of the inputs for the model 

with homogeneous inputs. Again, it is an open question how accurate is this approximation. 

 

In this paper, we evaluate the accuracy of different approximations within the AFA, with 

imperfectly granular and heterogeneous asset pools. We consider sequences of portfolios with 

decreasing granularity down to granularity level of 4 effective exposures. We also examine 

how pool level inputs perform (i) with extreme barbell pools and (ii) with pools that exhibit 

commonly observed probabilities of rating transition (having started with homogeneous 

ratings). 

 

These issues are important because the Basel Committee’s recent proposals on capital for 

securitisations (See BCBS (2012), (2013a) and (2013b)), particularly as they relate to the 

Modified Supervisory Formula Approach (MSFA), make great play of the need to allow for 

imperfectly granular and heterogeneous pools. A question we seek to address here is whether 

an intrinsically simpler and more transparent approach, the AFA, can cope with the 

complications of imperfect granularity and heterogeneity. 

                                                 
3
 See the Appendix for more details 
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The paper is organised as follows. Section 2 reviews the Vasicek loss distribution and the 

AFA. Section 3 considers the application of the Vasicek granularity approximation to the 

AFA and the SAFA. Section 4 compares the capital implied by the granularity adjusted AFA 

to the “true” capital implied by a Monte Carlo model. Section 5 discusses capital for deals 

with heterogeneous pools based on a version of the AFA with pool level inputs and on the 

Monte Carlo model. Section 6 concludes and an Appendix supplies a detailed step-by-step 

derivation of the Vasicek granularity adjustment. 

 

SECTION 2 –REVIEW OF LOSS DISTRIBUTIONS AND THE AFA 
 

In this section, we briefly review the Arbitrage Free Approach (AFA) proposed by 

Duponcheele et al (2012a). 

 

The model is based on a simple two-factor formulation of the latent variables driving the 

credit quality of exposures in a securitisation pool. Suppose a pool of assets is securitised in 

an SPV (Special Purpose Vehicle). Assume that each individual loan defaults when a 

Gaussian latent variable falls below a threshold. We express the latent variables as: 

 

    √          √         
 (1) 

    
 √        √        (2) 

 

In (2),      is a factor common to all the exposures in the securitisation pool but is 

uncorrelated with the common factor driving the bank portfolio:      . 

 

Substitution yields: 

 

    √              √              (3) 

      
 

√       
 (√          √      √       ) (4) 

            (    )  
  (5) 

 

We shall assume that the correlation parameter,   , takes the value prescribed for exposures 

of this asset class by Basel II. If       the latent variables of individual exposures within 

the pool have higher pairwise correlations than with those of exposures in the wider bank 

portfolio. Note that this two-factor, latent variable model is formally identical, under certain 

conditions on the correlation structure, to the Pykhtin-Dev model exposited in Pykhtin and 

Dev (2002) and (2003) and surveyed in Pykhtin (2004). 

 

Consider a pool of one-year, homogeneous, infinitely granular, non-interest-bearing loans 

with individual default probabilities of   , fractional expected losses of    , and total par 

equal to unity held by an SPV. Suppose that the securitisation SPV has issued pure discount 

notes also with a total par value equal to unity. Suppose the notes consist of a continuum of 

thin tranches.  
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Under these assumptions, the expected losses of a discretely thick tranche with attachment 

point A and detachment point D equals: 
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To calculate the marginal VaR (at an -confidence level) of a thin tranche held within a 

wider bank portfolio, following the Gourieroux-Scaillet insight, one may calculate expected 

losses conditional on the common factor driving the bank portfolio,      , equalling its - 

quantile.  

 

Conditional on       equalling its -quantile, the default probability of individual pool 

exposures is: 

 
   



























1

11 NPDN
NPD  (8) 

 

Conditional on       equalling its -quantile, the pairwise correlation between pool assets is: 
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Replacing    and       where they appear in equation (7) with     and        , 

respectively, yields expressions for the thin and thick tranche marginal VaRs. 

 

SECTION 3 –GRANULARITY ADJUSTMENTS APPLIED TO THE AFA 
 

The presentation of the AFA in the last section assumed a granular and homogeneous 

securitisation pool. Duponcheele et al (2013a) consider two ways of implementing the AFA, 

one based on pool-level inputs (their ‘Option 1’) and the other based on individual exposure-

level inputs (their ‘Option 2’). Both of these approaches may be adjusted for granularity. In 

the case of Option 1, one may employ the granularity adjustment suggested by Vasicek 

(2002). In the case of Option 2, the relevant granularity adjustment is slightly different. 

 

In this section, we review in more detail the granularity adjustment relevant for Option 1 

developed by Vasicek (2002) and then explain how granularity adjustments may be 

performed when Option 2 is employed.  
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Consider a portfolio of loans homogeneous in all aspects except their par values. Suppose 

they have weights in the portfolio            summing to unity. Vasicek (2002) proposes 

a granularity adjustment based on a parameter,  , defined follows: 

 

   ∑   
  

    (10) 

 

Let total portfolio losses be denoted,  , where: 

 

   ∑     
 
    (11) 

 

Here,    is an indicator variable, equalling unity when obligor i defaults and zero otherwise. 

 

Following the derivation in Vasicek (2002), one may show that the variance of total losses 

equals: 

 

         ( )    ( 
  ( )    ( )    (   ))    (   ( )) (12) 

 

One may fit the mean and variance of total losses with imperfect granularity to those that 

apply with perfect granularity by adjusting the latent variable correlation parameter,  . This 

yields the granularity adjusted correlation parameter: 

 

    (   ) (13) 

 

Option 1 described in Duponcheele et al (2013) employs pool-level inputs. Calculating the 

parameter   and then replacing correlation parameters where they appear in capital 

expressions with granularity-adjusted equivalents as in equation (13) yields a granularity-

adjusted version of the Option 1 AFA model. 

 

As mentioned above, Duponcheele et al (2013) present an alternative approach to 

implementing the AFA, denoted Option 2, potentially applicable to deals with heterogeneous 

pools. Under Option 2, one implements the AFA by forming a theoretical pool       

consisting of notional assets identical to the consolidated sub-portfolio of exposures to the 

same obligor as asset  . 
 

If    is the set of indices for exposures to the same obligor as exposure i, the portfolio weight, 

  , for exposures to this obligor is: 

 

    ∑       
 (14) 

 

One may consider a notional portfolio of 1/   homogeneous, equally correlated obligors with 

correlation parameter:         
 (assuming, for simplicity, that      is an integer value). Then 

we have: 

    ∑   
     

    
 

  
  

     ∑       
 (15) 

 

Hence, a slightly different granularity adjustment to the correlation is appropriate in this case, 

i.e.: 

         
          

 ∑       
(          

) (16) 
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SECTION 4 –MONTE CARLO ANALYSIS OF GRANULARITY 

In this section, we present comparisons of the capital implied by the Option 1 version of the 

AFA, inclusive of granularity adjustments, with the results of a Monte Carlo estimation of the 

“true” underlying capital charge. The Monte Carlo estimations may be regarded as an 

implementation of the ratings based model of portfolio risk proposed by J.P. Morgan (1997). 
 

We examine two cases of imperfect granularity. 
 

1. As a first exercise, consider an initial portfolio of 128 equally sized, homogeneous,  

1-year loans. We create a sequence of securitisation pool portfolios by successively 

halving the number of exposures (while doubling their par values) until we arrive at 4 

exposures. For each of the pools we consider (with 128, 64, 32, 16, 8 and 4 

exposures), we compare the capital implied by the AFA inclusive of the granularity 

adjustment of Vasicek (2002) with ‘true’ values obtained from Monte Carlo 

estimation. 

 

2. As a second exercise, we again consider a sequence of portfolios comprising two sub-

portfolios of equal par value. The first sub-portfolio consists of 64 homogeneous 

loans. In the second sub-portfolio, an initial set of 64 loans is successively altered by 

halving the number of loans while doubling the par value until there remains a single 

dominant exposure. This exercise is motivated by the fact that the quality of 

approximation as convergence proceeds may be impaired by exposures that dominate 

the portfolio.
4
 

 

In each of the two exercises, the rating of the underlying pool exposures is BB and the 

maturity of the pool exposures and structured exposures is one-year. Recovery rates are 

assumed to be constant and equal to 55%. In performing the Monte Carlo analysis, we 

suppose that each securitisation tranche that we are considering is held within a wider 

portfolio of 200 BBB-rated loans all with equal par values and maturities of 1 year. The 

number of replication completed in each Monte Carlo exercise is 5 million. 
 

The securitisation pool is scaled so that its par value equals 7% of the par value of the on-

balance-sheet loans. When we consider securisation tranches with 8 or fewer exposures, we 

reduce the relative size of the pool further, assuming that the par value of the pool is in that 

case 0.7% of that of the on-balance-sheet loans. We do this because otherwise the 

idiosyncratic risk of the individual pool loans could be significant to influence the estimated 

Unexpected Losses of the securitisation tranche exposures. 
 

The calculations are performed using default probabilities implied by a rating transition 

matrix for US industrials reported in Standard & Poor’s (2008).  

                                                 

4
 This is due to the obligor weights iw  being required to satisfy 0lim

1

2 




n

i

in w  in the approximation. 
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The pairwise correlations, denoted ρ, between the latent variables driving the credit quality of 

individual assets in the bank’s portfolio are given by the Basel formula. We assume that the 

additional correlation between the latent variables for loans within the securitisation pool, * , 

is 10%. This is a reasonable benchmark value according to the calibration exercise reported 

by Duponcheele et al (2013a). 
 

Table 1: Tranche Par Assumptions 

 
 

Table 1 shows the tranche structure of the securitisations we study. Below a single extremely 

thick tranche, we suppose there are 16 mezzanine tranches each comprising 2.5% of the total 

deal par value. Below the mezzanine tranches in seniority, we assume there are 10 junior 

tranches each with thickness equal to 1% of the total deal par. 
 

Table 2 shows the total capital for all the tranches implied by the AFA model and the Monte 

Carlo approach. As one may observe, the AFA total capital is independent of the number of 

loans in the pool (and equal to KIRB, the capital the pool loans would attract if they were held 

on-balance sheet). This reflects the fact that the granularity of the pool is immaterial for total 

capital since the pool is assumed to be negligibly small compared to wider bank portfolio 

under the assumptions of the AFA. Granularity of the pool should only affect the distribution 

of capital across tranches of different seniorities, not the total level of capital allocated to all 

the tranches. 
 

Table 2: AFA and MC total capital 

Number of 

total pool 

exposures

AFA total 

capital MC capital

128 6.13% 6.28%

64 6.13% 6.32%

32 6.13% 6.52%

16 6.13% 6.36%

8 6.13% 6.64%

4 6.13% 6.77%  
 

Also apparent from Table 2 is the fact that the Monte Carlo-based capital is slightly higher 

than the theoretical capital and gradually increases as granularity decreases. This reflects the 

fact that the Monte Carlo capital estimates are slightly boosted by idiosyncratic risk in 

individual loans that is only partially diversified away when the securitisation pool is 

assumed to be 7% of the bank’s wider portfolio and 0.7% when the pool contains 8 and 4 

exposures.  

Category

Percentage 

of total par

Number of 

tranches

Junior tranches 10% 10

Mezzanine tranches 40% 16

Senior tranches 50% 1

Total 100% 27
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Note that what limits scope for cutting the relative size of the securitisation pool further is 

that the precision of Marginal VaR and Unexpected Loss calculations is reduced when they 

become negligibly small. Hence, there is a trade-off between accepting (i) a slight upward 

bias through imperfect diversification and (ii) lower precision in the MVaRs and Unexpected 

Losses of each tranche. From looking at the distribution of capital across tranches of different 

seniority, it is important to have reasonably high precision in the MVaR and Unexpected 

Loss estimates. 

 

Figure 1 shows how the Vasicek (2002) granularity adjustments affect the distribution of 

Unexpected Loss-based capital across tranches of different seniority. As one may observe, 

the granularity adjustment shifts capital from the junior and lower mezzanine area towards 

senior and senior mezzanine tranches. 

 

Figure 1: AFA implied unexpected loss 

 
 

Figure 2 shows the same capital AFA-based capital inclusive of granularity adjustments and 

compares it to the capital implied by the Monte Carlo estimations. The six sub-plots 

corresponding to 128, 64, 32, 16, 8 and 4-loan pools show a good agreement between the two 

approaches for cases in which the number of pool exposures exceeds 16. 
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Figure 2: Comparisons between AFA UL and MC UL (128, 64, …, 4) 
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The assumption that we adopt in performing the Monte Carlo analysis of fixed recovery rates 

leads to flat areas in the Unexpected Loss plots in Figure 2 and makes it difficult to compare 

the compare the two sets of results in a meaningful way for very low granular pools. We 

could have assumed random recoveries in which case the Monte Carlo capital estimates 

would have appeared smoother but this would have introduced an inconsistency with the 

modelling assumptions employed in the AFA. 

We believe it is fair to conclude from the comparisons that for granularity levels of more than 

20 effective exposures, the AFA inclusive of Vasicek-style granularity adjustments provides 

a good approximation to the true capital that thin tranches of securitisations with imperfectly 

granular pools should attract. For thick tranches of securitisations, which correspond to real-

life transactions, this number could be lowered to 10 effective exposures. The choice of 20 

and 10 mentioned here are orders of magnitude rather than exact values. 

When the granularity of the portfolio drops to very low levels, i.e. below 10, the effects of 

randomness in the loss given default of individual assets cannot be ignored. In Basel II, the 

LGD of an individual asset is not linked to the systemic risk factor when determining the 

Marginal Value at Risk. In consequence, only its mean matters for capital calculations. 

However, in the context of securitisations, randomness in recoveries alters the allocation of 

capital across tranches.  

One may allow for this in the AFA by increasing the level of LGD where it appears in the 

AFA formulae. Specifically, one may replace the expression (
 

   
) in equation (7) with a 

geometric interpolation (
 

   (   ))  where   is the granularity parameter in equation (10). 

Illustrations of such adjustments are provided in Appendix 2. 

Such an adjustment would lead to an increase in the amount of capital if the probability of 

default of the pool is not adjusted. In order to maintain the principle of neutrality, one should 

adjust the pool probability of default in equation (7) by multiplying it by    ( ). 

There are, of course, other solutions for dealing with the allocation of capital across tranches 

for those rare securitisations that exhibit very low levels of granularity. We intend to examine 

these alternatives in future work. 

We now turn to the second exercise we perform to assess the accuracy of Vasicek-style 

granularity adjustments within the Option 1 version of the AFA. Recall that in this exercise, 

we consider a sequence of portfolios starting with 128 homogeneous pool exposures. To 

proceed along the sequence, we hold 64 of the 128 exposures unchanged which successively 

halving the number and doubling the par value of the exposures that make up the other half of 

the pool. In this way, we consider pools that contain 128, 96, 80, 72, 68, 66 and 65 exposures. 

In the 65 exposure pool, a single exposure has the same par value as all the rest of the 

exposures combined. 

Table 3 shows the corresponding AFA and MC capital for all the tranches in the deal. Again, 

there appears to be some slight upward bias in the Monte Carlo estimates of total capital as 



11 | P a g e  

 

the cost of achieving reasonable precision in the Unexpected Loss estimates for individual 

tranches. 

Table 3: AFA and MC total capital  

Aggregated 

pool 

exposures 

AFA total 

capital MC capital 

32 6.13% 6.28%

16 6.13% 6.27%

8 6.13% 6.48%

4 6.13% 6.42%

2 6.13% 6.63%

1 6.13% 6.42%  

To save space, we do not present the equivalent of Figure 1 in this case but the effect of the 

granularity adjustment in the AFA is very similar in that capital is shifted from junior and 

junior mezzanine to senior and senior mezzanine tranches. Figure 4 shows the equivalent of 

Figure 2, i.e., a comparison of AFA capital for different tranches with the Monte Carlo-

estimation-based capital for each of the different pool compositions assumed. In this case, the 

results suggest that the AFA supplies accurate capital values for portfolios of granularity 

equal or greater than the portfolio with 64 small and 8 concentrated exposures. 
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Figure 4: Comparisons between AFA UL and MC UL (aggregate 64 to 32, 16, …, 1) 
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SECTION 5 –MONTE CARLO ANALYSIS OF HETEROGENEITY  

In this section, we compare for heterogeneous pools the capital implied by the Option 1 

version of the AFA with that obtained using the Monte Carlo approach described above. We 

examine two cases of heterogeneity. 

1. In the first exercise, we consider a sequence of portfolios starting with 100 BBB-rated 

loans of equal par value. We work out, using a historical ratings transition matrix, the 

portfolio shares that the pool is likely to have in different rating categories after 1, 2, 3 

and 4 years conditional on not defaulting. This provides an idea of how capital 

behaves as an initially homogeneous pool follows a ‘natural’ process of becoming 

more heterogeneous through the evolution of credit quality.
5
 

 

2. In the second exercise, we examine a sequence of portfolios with different so-called 

‘barbell’ structures. Specifically, we consider portfolios of 100 loans of equal par but 

with percentages 90% BBB-rated and 10% CCC rated, 80% BBB-rated and 20% 

CCC-rated and so on until we have a portfolio with 50% BBB rates and the remainder 

CCC-rated.  

We begin by considering the first exercise. Table 4 shows the number of exposures in each 

rating bucket for the sequence of portfolios. Moving along the sequence, increasing numbers 

of exposures are in the ratings categories further from the initial rating of BBB.  

Table 4: Number of exposures for each rating in each portfolio 

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 Portfolio 5

AAA 0 1 1 1 1

AA 0 1 1 1 1

A 0 3 7 10 13

BBB 100 90 81 75 69

BB 0 3 7 10 12

B 0 1 2 2 3

Cs 0 1 1 1 1

Total 100 100 100 100 100  

Table 5: AFA
6
 and MC total capital of each portfolio  

AFA capital MC capital

Portfolio 1 2.75% 2.83%

Portfolio 2 2.91% 2.83%

Portfolio 3 3.05% 2.98%

Portfolio 4 3.18% 3.04%

Portfolio 5 3.30% 3.47%  

                                                 
5
 Mathematically, the portfolio shares are derived for portfolios 2, 3, 4, and 5 in the sequence by taking the 

BBB row in the historical transition matrix taken to the powers 1, 2 , 3 and 4, deleting the last element in the 
row and then dividing the remaining elements by their sum so the final weights sum to unity. 
6
 The AFA capital increases with the maturity due to the IRBA maturity adjustment. 
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Table 5 shows the total capital for all the securitisation tranches for the different deals. The 

total capital as measured by both the AFA and the Monte Carlo model increase as the 

distribution across ratings buckets increases. The growth is reasonably consistent across the 

two approaches. 

 

Figure 5: Comparison of AFA and MC unexpected loss (portfolio 1: BBB-rated pool) 

  

Figure 5 shows the capital implied by the AFA and the Monte Carlo-based capital estimates 

for portfolio 1, i.e., the case in which all the loans are rated BBB. Figure 6 shows the results 

for portfolios 2, 3, 4 and 5, corresponding to cases in which the pool ratings have evolved to 

equal those that would be implied by the natural evolution of the ratings starting at BBB after 

1, 2, 3 and 4 years. It is striking how closely the AFA capital shown in Figure 6 matches the 

capital implied by the Monte Carlo estimates. 

We now turn to the second heterogeneity exercise. Recall that this involves calculating 

capital for a sequence of portfolios, each consisting of 100 1-year maturity loans. The loans 

are split into BBB- and CCC-rated categories as shown in Table 6. Table 7 shows the total 

Unexpected Loss (UL) and the total Expected Loss (EL) implied by the AFA under Option 1 

and by the Monte Carlo estimates for each of the portfolios. 

One may observe that the total ELs implied by the two approaches are almost exactly equal 

while the total ULs are very good approximations. This is perhaps not surprising since 

despite the barbell nature of the portfolio, the capital implied by the AFA equals the capital 

attracted by the underlying pool, KIRB, which is the theoretically correct under these 

assumptions.
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Figure 6: Comparisons of AFA and MC unexpected loss (portfolio 2 to portfolio 5) 
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Table 6: Number of exposures for each rating 

Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4

BBB 90 80 70 60

CCC 10 20 30 40

Total 100 100 100 100  

Table 7: Comparisons of total UL and total EL  

AFA UL AFA EL MC UL MC EL

Portfolio 1 4.36% 1.43% 4.30% 1.43%

Portfolio 2 5.97% 2.76% 5.83% 2.76%

Portfolio 3 7.59% 4.08% 7.49% 4.08%

Portfolio 4 9.20% 5.40% 9.13% 5.40%  

The distribution of capital across tranches implied by the Option 1 AFA and by the Monte 

Carlo approach is shown for portfolios 2, 3, 4 and 5 in Figure 7. As one may observe, from 

Figure 7, the distribution of capital implied by the AFA is a reasonable approximation to that 

yielded by the Monte Carlo approach even in these cases of barbell portfolios. There are 

some regions of the mezzanine area of the deals in which the Monte Carlo capital exceeds 

that implied by the AFA. The AFA capital is more conservative for senior tranches and junior 

mezzanine tranches on the other hand. 

One way to mitigate the fact that the AFA is less than completely conservative for tranches in 

a particular range of seniorities (although it is more conservative than the Monte Carlo 

approach in other ranges) is just to increase the conservatism of the approach globally. Figure 

8 shows the distribution of capital implied by the AFA if its KIRB input is boosted by 20%. 

(One might note that the first Basel Working Paper on securitisation capital (see BCBS 

(2001)) suggested that capital after securitisation should equal 20% more than capital prior to 

securitisation.)  

As shown in Figure 8, the boost of 20% in the KIRB input has the effect of increasing capital 

for tranches throughout the seniority range. This reduces the area of seniorities in which the 

AFA is less conservative than the Monte Carlo estimates. 

Lastly, in Figure 9 we show the distribution of Expected Losses (EL) for tranches of different 

seniorities. One may observe discrepancies between the Option 1 AFA ELs and the Monte 

Carlos-based ELs. In particular, the AFA is much more conservative about the levels of ELs 

experienced by senior tranches in the structures. However, the curves may be viewed as 

reasonable approximations. For capital rules that involve deduction for more junior tranches, 

being more conservative for senior and less conservative for junior tranches is not a serious 

failing. 

Overall, we think it is reasonable to conclude from the above analysis that the Option 1 AFA 

performs very well in approximating the ‘true’ capital levels implied by the Monte Carlo 

estimates. Even in the case of barbell portfolios, the Option 1 AFA appears to be a reasonable 

and appealing simple way to calculate capital. 
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Figure 7: Comparisons of AFA and MC unexpected loss  
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Figure 8: Comparisons of AFA (with 20% capital boosting) and MC unexpected loss  
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Figure 9: Comparisons of AFA and MC expected loss 
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SECTION 6 –CONCLUSION 

This paper has investigated the effects of granularity and heterogeneity on the appropriate 

capital for securitisation tranches. We do this by comparing capital implied by the Arbitrage 

Free Approach (AFA) of Duponcheele et al (2013a) with capital estimates based on Monte 

Carlo estimations. The AFA model allows for granularity by including an adjustment to 

correlation and can be implemented for deals with heterogeneous pools by use of pool-level 

inputs such as KIRB and weighted averages of other parameters such as LGD. 

For the 1-year maturity deals on which we focus, the total capital for all the tranches in a 

securitisation should under our assumptions equal the on-balance sheet capital given by the 

Basel notion of KIRB. Unsurprisingly, we find close correspondence between total capital 

measured by the two approaches. 

We find that the granularity adjustments in Option 1 of the AFA which are based on Vasicek 

(2002) perform well for portfolios with more than 10 effective assets in that the AFA capital 

distribution and that implied by the Monte Carlo estimates are very similar. For the rare 

situations of less than 10 effective assets, we find that an additional granularity adjustment to 

the LGD yields reasonable results. 

The AFA also yields accurate approximations to the ‘true’ distribution of capital for the 

heterogeneous pool deals we examine. This is particularly the case for the ‘natural’ 

heterogeneity one observes in deals that start homogeneous but become heterogeneous as the 

credit quality of the pool evolves over time. Even for so-called barbell pools, the AFA seems 

to offer a reasonable approximation to the capital implied by the Monte Carlo.  
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APPENDIX 1 

For completeness, we provide, in this Appendix, a simplified exposition of the granularity 

adjustments proposed by Vasicek (2002). 

 

Assume a homogeneous portfolio of   borrowers, each with probability of default  , and pairwise 

correlation  . Assuming no recoveries (i.e. loss-given default      ), denote the loss on each 

borrower as     {                   }. Assume portfolio weights             such that: 

 

∑  

 

   

   

 

and hence the total portfolio loss is given by: 

 

  ∑    

 

   

 

 

Vasicek (2002) derives the loss distribution of  , without granularity adjustment, as the number of 

borrowers    , as: 

 

  [   ]   ( 
√      ( )    ( )

√ 
) (A1) 

 

This is derived by firstly assuming a stochastic process with correlated Brownian motions    for the 

value of the  th borrower’s assets, and decomposing each    into two factors, namely: 

 

      √    √    (A2) 

 

where   represents the macroeconomic common factor, and            represent the idiosyncratic 

factors of each borrower.              are mutually independent standard Gaussian variables. Since 

the    are independent and identically distributed, then given a fixed value of  , so are the    . This 

allows us to apply the weak law of large numbers in the limit as     , and hence the result follows. 

 

Vasicek states that a necessary and sufficient
7
 condition for convergence is: 

∑   
 

   

   

   

 

  

                                                 
7
 To show sufficiency, as the variance is finite and non-zero, use Chebyshev’s inequality – that is, for   a 

random variable such that  [ ]      and the variance    [ ]       such that       we have 

 [|   |    ]  
 

   for      In our case,  [ | ]  ∑   [  | ]   ( )  and 

   [ | ]  ∑  
    [  | ]     ( )∑  

    ( )  Choosing   
 

 ( )√ 
 gives that  [| |   ( )|   ]  

  ( ) 

     for all     if    . Therefore, convergence in probability, and hence weak convergence in 

distribution, is achieved. Thus the weak law of large numbers holds. Conversely, if convergence, then 

   [ | ]    =>    [∑    | ]    => ∑  
    [  | ]    => ∑  

    as    [  | ]    ( )   . 
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The proof of the adjustment for granularity uses moment matching of the first two moments (that is, 

expectation and variance) to the limiting distribution of the portfolio loss  . This is designed to 

compensate for incomplete convergence under the weak law. The steps are as follows: 

 

(i) Derive the loss distribution   for the infinitely granular case using the weak law of large numbers; 

 

(ii) Derive expressions for the expectation and variance of  ; 

 

(iii) For the non-granular portfolio loss distribution   ̃ , compute  [  ̃ | ] and non-zero    [  ̃| ]; 
 

(iv) Compute the unconditional expectation  [  ̃ ] and the unconditional variance    [  ̃ ]; 
 

(v) Match expectation and variance of distribution of non-granular   ̃  to those of the limit distribution 

for the granular  .  

 

 

 Step (i), the loss distribution for the infinitely granular   

 

This is already defined in Vasicek (2002): 

 

     ( 
   ( )  √  

√   
) 

with   a standard Gaussian. 

 

 

 Step (ii): expectation  [ ] and variance    [ ] of infinitely granular   

 

Under the infinitely granular base case, the expectation is given by: 

 

 [ ]   [ (
   ( )   √  

√   
)] 

 

 [ ]   [ [  
   ( )  √  

√   
| ]] 

 

 [ ]   [ [ √       ( )  √  | ]] 

 

 [ ]   [ [ √    √      ( )| ]] 

 

  [ ]   [ √    √      ( )] (A3) 

 

Here,   is a standard Gaussian random variable. The last equality follows from the identity 

 [ [ | ]]   [ ]. Setting    √    √  , we have that   is standard Gaussian, as   and 

  are both independent standard Gaussian. Hence, 

 

  [ ]   [     ( )]   (   ( ))    (A4) 
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The second moment of   is given by: 

  [  ]   [ (
   ( )  √  

√   
)
 

] (A5) 

 

  [  ]   [ [   
   ( ) √  

√   
| ]   [   

   ( ) √  

√   
| ]] (A6) 

 

  [  ]   [ [  √    √      ( )| ]   [  √    √      ( )| ]] (A7) 

 

  [  ]   [ [  √    √      ( )|    √    √      ( )| ]] (A8) 

 

  [  ]   [  √    √      ( )   √    √      ( )] (A9) 

 

(for   ,    independent standard Gaussian random variables). 

 

Where (A8) follows since    and    are independent, and (A9) follows the identity 

 [ [ | ]]   [ ] as before. Setting      √    √   and      √    √    we have: 

 

  [  ]   [      ( )       ( )] 
 

  [  ]    ( 
  ( )    ( )  ) (A10) 

 

where (     ) are standard bivariate Gaussian correlated with  . 

 

Hence, from (A10), we have: 

   [ ]   [  ]  ( [ ])  
 

    [ ]    ( 
  ( )    ( )  )     (A11) 

 

where   (     ) denotes the cumulative distribution function of a standard bivariate Gaussian with 

correlation  . 

 

 Step (iii): expectation  [ ̃| ] and variance    [ ̃| ] of non-granular  ̃ 

 

Turning now to the non-granular loss distribution  ̃, we calculate moments of  ̃| , to condition out 

the common correlated factor  . 

 

The conditional expectation  [ ̃| ] is non zero under the assumption of non-complete convergence. 

This is given by: 

 [ ̃| ]  ∑   [ ̃ | ]

 

   

 

 [ ̃| ]  ∑    ( )

 

   

 

 [ ̃| ]   ( )∑  

 

   

 

  [ ̃| ]    ( )   (
   ( )   √ 

√   
) (A12) 

 

Here,  ( )    ( )   ( ̃   | ), and  [ ̃ | ]   [ ̃   | ]    ( ).  
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The conditional variance    [ ̃| ] is given by: 

 

   [ ̃| ]     [∑   ̃ | 

 

   

] 

   [ ̃| ]  ∑  
    [ ̃ | ]

 

   

 

   [ ̃| ]  ∑  
 ( [( ̃ | )

 
]  ( [ ̃ | ])

 
)

 

   

 

   [ ̃| ]  ∑  
 ( [( {                   }| )

 
]  ( [ {                   }| ])

 
)

 

   

 

 

Since ( { })
 

  { } 

 

   [ ̃| ]  ∑  
 ( [ {                   }| ]  ( [ {                   }| ])

 
)

 

   

 

   [ ̃| ]  ∑  
 (  ( )  (  ( ))

 
)

 

   

 

   [ ̃| ]   ∑  
 ( ( )  ( ( ))

 
)

 

   

 

   [ ̃| ]  ( ( )  ( ( ))
 
)∑  

 

 

   

 

 

    [ ̃| ]  ( ( )  ( ( ))
 
)    (A13) 

Here: 

  ∑  
 

 

   

 

 

 

 Step (iv): unconditional expectation  [ ̃] and variance    [ ̃] for non-granular  ̃ 

 

To calculate the unconditional expectation  [ ̃] 
 

 [ ̃]   [ (
   ( )    √ 

√   
)] 

 

 [ ̃]   [     ( )] 
 

 [ ̃]   (   ( )) 

 

 [ ̃]    
 

To calculate the unconditional variance, we use the law of total variance, 

 

    [ ̃]   [   [ ̃| ]]     [ [ ̃| ]] (A14)  
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where    [ [ ̃| ]] represents the variance of  ̃ explained by the common factor   (on average), and 

 [   [ ̃| ]] represents the expected portion of the variance of  ̃ which is not explained by  . The 

sum of explained and unexplained parts equals the total variance of  ̃. 

 

Beginning with the explained part, 

 

   [ [ ̃| ]]     [ [ (
   ( )    √ 

√   
)]] 

 

    [ [ ̃| ]]    ( 
  ( )    ( )  )     (A15) 

 

While for the unexplained part, 

 

 [   [ ̃| ]]   [( ( )  ( ( ))
 
)   ] 

 

 [   [ ̃| ]]    ( [ ( )]   [( ( ))
 
]) 

 

 [   [ ̃| ]]    ( [ (
   ( )    √ 

√   
)]   [( (

   ( )    √ 

√   
))

 

]) 

 

  [   [ ̃| ]]    (    ( 
  ( )    ( )  )) (A16) 

 

by substitution of (A2) and (A5). 

 

Aggregating these two equations gives: 

 

   [ ̃]   (    ( 
  ( )    ( )  ))    ( 

  ( )    ( )  )     

     (   )  ( 
  ( )    ( )  )     

     (   ( ))  (   )  ( 
  ( )    ( )  )     (A17) 

     ( 
  ( )    ( )  )   (   )  ( 

  ( )    ( )  )     (A18) 

  [( (   ( )))
 

   ( (   ( )))
 

  ]   (   ) [( (   ( )))
 

  ( (   ( )))
 

  ]    (A19) 

   [   ( (   ( )))
 

]   (   ) [    ( (   ( )))
 

]      

   ( (   ( )))
 

 (   ) ( (   ( )))
 

  

  (      ) ( (   ( )))
 

  

  (   (   )) ( (   ( )))
 

  

    ( 
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 (A20) 

     ( 
  ( )    ( )    (   ))     (A21) 

 

where (A17) and (A21) follow since: 

   (   ( )) 

 

where (A18) follows from the correlated bivariate normal identity: 

 (   ( ))    ( 
  ( )    ( )  )  
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Defining  ( ) as the standard Gaussian density function, (A19) and (A20) follow from the first two 

terms of the series expansion identity. 

  (     )  ( ( ))
 
   ( ( ))

 
   

 

 

 Step (v): Match expectation and variance of distribution of non-granular   ̃  to those of the 

limit distribution for the granular   

 

Comparing the expectation and variance of the granular loss distribution   to the non-granular 

distribution   ̃ gives: 

 

 [ ]    
 

 [ ̃]    
 

 

   [ ]    ( 
  ( )    ( )  )     

 

   [ ̃]    ( 
  ( )    ( )    (   ))     

 

The expectations match exactly,  [ ̃]   [ ]   , and the variance differs by only one parameter: 

namely the correlation parameter of the bivariate normal function. 

 

Hence it is appropriate to adjust for non granular portfolios by varying the original correlation   by an 

additive component:  (   ). 
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APPENDIX 2 

In this appendix, we provide illustrative calculations of the geometric interpolation of the LGD cap in 

the formula for determining the probability of default of a tranche, using as input the LGD of the 

underlying pool.   is the number of effective assets. 

 

Figure A1: Illustrative LGD Adjustments 

 
 

Figures A2 and A3 show the AFA and Monte Carlo capital for tranches for the same BB-rated pool 

and tranche structure employed in the examples described in the text. In this case, however, we 

suppose in the Monte Carlo calculations that pool-loan recovery rates are stochastic with independent 

beta distributions and the AFA calculations are performed using a granularity adjusted LGD rate. The 

mean recovery rate is assumed to be 55% with a volatility of 25%. The results suggest our proposed 

LGD adjustment functions satisfactorily for very low granularity deals.  

LGD Pool LGD Pool LGD Pool

25% 45% 75%

1 100.00% 100.00% 100.00% 100.00%

2 50.00% 50.00% 67.08% 86.60%

3 33.33% 39.69% 58.72% 82.55%

4 25.00% 35.36% 54.94% 80.59%

5 20.00% 32.99% 52.79% 79.44%

6 16.67% 31.50% 51.41% 78.68%

7 14.29% 30.48% 50.44% 78.15%

8 12.50% 29.73% 49.72% 77.75%

9 11.11% 29.16% 49.18% 77.44%

10 10.00% 28.72% 48.74% 77.19%

15 6.67% 27.42% 47.46% 76.45%

20 5.00% 26.79% 46.83% 76.09%

25 4.00% 26.43% 46.46% 75.87%

30 3.33% 26.18% 46.21% 75.72%

50 2.00% 25.70% 45.72% 75.43%

75 1.33% 25.47% 45.48% 75.29%

100 1.00% 25.35% 45.36% 75.22%

150 0.67% 25.23% 45.24% 75.14%

200 0.50% 25.17% 45.18% 75.11%

1000 0.10% 25.03% 45.04% 75.02%

1000000 0.00% 25.00% 45.00% 75.00%

   (   )    (   )    (   )     
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Figure A2: AFA capital without LGD adjustment for BB pool 

 

Figure A3: AFA capital with LGD adjustment for BB pool
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AFA and MC unexpected loss ( 32 pool exposures )
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AFA and MC unexpected loss ( 16 pool exposures )
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AFA and MC unexpected loss ( 8 pool exposures )
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AFA and MC unexpected loss ( 4 pool exposures )

 

 

AFA UL

Monte Carlo UL

KIRB = 0.074818

0 10 20 30 40 50
0

20

40

60

80

100

Protection (%)

U
n

e
x
p

e
c
te

d
 l
o

s
s
(%

)

AFA and MC unexpected loss ( 2 pool exposures )

 

 

AFA UL

Monte Carlo UL

KIRB = 0.091349

0 10 20 30 40 50
0

20

40

60

80

100

Protection (%)

U
n

e
x
p

e
c
te

d
 l
o

s
s
(%

)

AFA and MC unexpected loss ( 1 pool exposures )

 

 

AFA UL

Monte Carlo UL

KIRB = 0.13617


