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Abstract 

The recent interest in portfolio credit risk modelling has concentrated attention on the 

correlation structure of credit risk. This paper calculates long-holding period 

correlations for emerging market sovereign spreads and compares these with the 

correlations of equity market indices for the same countries. 

 

1. Introduction 

The academic literature on credit spreads has increased substantially in recent years but 

the focus has been on a few quite specific topics. Pitts and Selby (1983), Sarig and 

Warga (1989), Litterman and Iben (1991), Helwege and Turner (1999) have examined 

the shape of credit risk term structures (see also Kiesel, Perraudin and Taylor (1999)). 

Longstaff and Schwartz (1995), Morris, Neal and Rolph (1999), Duffee (1999) and 

Kiesel, Perraudin and Taylor (2000) study the correlation between changes in interest 

rates and in credit spreads. Ang and Patel (1975), Altman (1989), Kao and Wu (1990), 

Hand, Holthausen and Leftwich (1992), and Taylor and Perraudin (2000) investigate 

the relation between credit spreads and ratings. 

 

Increased interest in the modelling returns on credit risk portfolios means the study of 

the correlation structure of credit risk is an important area of current research. In this 

field, very few studies have so far been attempted. In an important recent contribution, 

Varotto (2000) examines credit-related correlations in a large dataset of time series for 

individual Eurobonds. The interest of his study is augmented by the quality of the data 

employed which consists of daily observations of bond prices for several thousand 

straight coupon bonds, entirely free of the optionality that bedevils most empirical work 

on bond spreads. 

 

Using cross-sectional regression techniques applied by Heston and Rouwenhorst (1994) 

to equity returns for different countries and industries, Varotto shows that there is more 

scope for reducing portfolio risk through cross-country diversification than through 

diversifying across industries. The average pair-wise correlation for bonds in Varotto’s 
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sample is 19%. Within countries, the average correlations are 15% for bonds issued by 

US-domiciled obligors and 16% and 23% for bonds issued by obligors from Japan and 

the UK respectively. 

 

This paper contributes to knowledge regarding credit risk correlations by studying a 

particular part of the credit markets, namely dollar-denominated sovereign Eurobond 

markets. There are three stages in the analysis. First, daily time series of spreads are 

extracted from bond prices. Second, correlations in long horizon changes in spreads and 

log equity prices are calculated, using overlapping daily data as suggested by Kiesel, 

Perraudin and Taylor (1999). Third, quadratic programming techniques are employed 

to merge the equity- and spread-based correlation matrices so as to obtain a single 

matrix that can be used in credit risk modelling. 

 

2. Data 

The data used in the study consisted of: 

A. Daily bond mid-prices for 20 countries: Argentina, Brazil, China, Colombia, 

Hungary, Iceland, Indonesia, Mexico, Russia, Slovenia, Thailand, Costa Rica, 

Croatia, Greece, Lithuania, Philippines, South Korea, Tunisia, Venezuela and 

Portugal.  

B. Time series yield data for US government pure discount bonds. These are 

necessary in order to infer spreads on the defaultable sovereign bonds.  

C. Equity index data for a large group of stock market indices (including both 

country and industry indices). 

The source of the bond price data is Bloomberg™. The bonds are selected according to 

the following criteria:  

1. The currency is US dollar denominated.  

2. The coupon is fixed.  

3. The bond has not expired. 

4. The bond is neither call nor put features has no sinking fund.  

Applying these stringent criteria, one obtains a dataset containing 49 individual bonds. 

When there are multiple bonds for a given sovereign, the bond with the largest number 

of daily price observations is selected.  
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The US strip yield data goes from 16th April, 1991 to the present and includes 3 

months, six months, 1-5,7,10, 20 and 30 years maturities. Data for the additional 

maturities 8, 9,15 and 25 years starts on 10 April 1996. In calculating spreads, one 

needs yields for specific maturities including fractions of years. To obtain these, we 

interpolate the adjacent yields for annual maturities in a straightforward fashion.  

 

The bonds in our data set are listed in Table 1. As is apparent, the sample periods in 

which individual bond prices are observed vary considerably. Some bonds are only 

observed for the last two years while others are observed for more than seven years. 

While this is not apparent from the table, the data suffers from the additional problem 

that for periods within the sample ranges, there are missing observations. 

 

3.Techniques 

The first task to be tackled is that of extracting a daily time series of spreads against US 

Treasury yields for each bond. In principle, one might expect that both spreads and 

default free yields would have their own term structure in that spreads and yields at 

long maturities would differ from those at short maturities. This would suggest that to 

extract spreads, one would have to employ term structure fitting techniques such as 

those used on defaultable bond prices by Schwartz (1998) and Perraudin and Taylor 

(2000). These techniques yield flexible estimates of credit term structures but require 

large numbers of bonds to produce reliable estimates. Since relatively few emerging 

market sovereign bonds are available and because we wished to infer spreads for 

individual sovereigns, it was necessary to consider simpler approaches.  

 

We therefore assume that while the default free term structure is unrestricted, the term 

structure of credit spreads for individual sovereign borrowers is flat. In this case, given 

estimates of the default free term structure, one may extract a credit spread from a 

single observation of a defaultable bond price. This involves, for each date t in the data 

set, inverting the following equation to find a time series of values St  
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Here, Pt is the market price of the bond at date t and Rt,j is the yield at date t on a US 

Treasury strip with maturity T-t and dj is the coupon payment on the bond paid at date 

t(j).1

 

One may ask whether the assumption of flat term structures is too strong. Simulation of 

structural corporate bond pricing models suggests that high quality credit spreads are 

upward sloping and low credit quality spreads are hump shaped (see, for example, 

Selby and Pitts (1983)). Actual market data for credit spreads, however, suggests that 

spreads are much flatter than theoretical models imply (see the Bloomberg spread 

means provided in Kiesel, Perraudin and Taylor (1999)). Hence, the approximation in 

assuming flat spreads is probably not excessively strong. 

 

The second step in our analysis is the estimation of correlations between different 

spreads. We are primarily interested in long holding period correlations relevant for 

credit risk modelling. Kiesel, Perraudin and Taylor (1999) show that spread correlations 

calculated for one day holding periods may be very different from those that apply over 

long holding periods such as six months or one year. They advocate simple non-

parametric techniques for estimating long horizon moments of spread changes. 

 

 In essence, the Kiesel-Perraudin-Taylor technique consists of (i) estimating long-

horizon moments of changes in the series using highly overlapping observations of 

changes (with daily data, an overlapping observation moment estimator for say a year 

will involve very substantial overlap between successive observations), and (ii) 

calculating asymptotic corrections for biases that arise from the use of overlapping 

observations. The bias corrections are calculated assuming that the series is a pure 

random walk. For a long horizon, the random walk component of the series will 

dominate so adjusting as though the series were a random walk is appropriate.  

 

The moments that interest us here are correlation coefficients, i.e., the ratio of the 

covariance between two series to the product of the standard deviation of each series. If 

the numerator and denominator in this ratio were independent of each other, then since 

the bias corrections for the numerator and denominator are equal, the correction would 

                                                 
1 The inversions were performed using a standard quasi-Newton root finding algorithm written in Gauss. 
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cancel. In this case, one may simply calculate an unbiased correlation estimate using 

the uncorrected covariance and standard deviation estimates. Of course, the numerator 

and denominator are not independent but the order of bias induced is less than that 

created by the use of overlapping observations. We, therefore, follow the simple 

approach of working with a ratio of uncorrected moments. 

 
A complication that arises with our data and which is absent from the data employed by 

Kiesel, Perraudin and Taylor is that the data periods covered by the different series are 

not the same. Even within the ranges of dates for which we observe spreads for two 

series, one of the series may have isolated missing observations. These problems mean 

that the number of observations available to us is quite small if we insist on calculating 

spread correlations using overlapping observations of, for example, spread changes 

over a fixed period, such as one year.  

 

To cope with this problem, we (i) calculate individual correlations for spreads i and j, 

say, using all the observations for which both i and j spreads are observed for which 

there exists in the data set a change over at least as long a period as the given horizon. 

In other words, if we are interested in spread changes over six months, we employ any 

t-dated pair of i and j spreads for which there is a pair of spreads observed at least six 

months earlier in the sample. To be slightly more formal, if our desired horizon is K, 

for any date t, we include in the estimator suitable scaled squared spread changes from t 

minus K’ to t where K’ is the smallest integer greater than K for which we observe data 

at t-K’. This approach implies that data period for the i and j spread pairs is then not, in 

general, the same as the period for which i and k spreads are observed.  

 

Mathematically, our covariance estimator is defined as: 
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Here, the sample of observations j=1,…,N, consists of N successive observations which 

are not necessarily observed on successive days but for each of which, both the spreads 
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S1,t(j) and S2,t(j) are observed. By convention t(1)=1. The constant K is the number of 

days for which one wants to calculate the holding period covariance. For each 

observation date, t(j), the quantity t*(j) is the latest date for which t*(j)<t(j)-K and the 

spreads S1,t*(j) and S2,t*(j)  are observed if this date exists and otherwise equals 0. k(j) is 

defined as t(j)-t*(j) and  

{ }0)(*,...,2,1min >≡ itthatsuchNa  . 

Finally, in order to obtain the correlation, we compute the two variances over the same 

period used to compute the covariance. 

 

The equity correlations are also estimated using the overlapping observation approach 

described above except with a common sample period and with changes in the log 

equity indices always over the same period. (Their estimation is not therefore subject to 

the complications described above that affect the spread correlations.) 

 

The ready availability of equity index data means that it is much easier to obtain 

country and industry factor correlations based on equity correlations than it is to derive 

spread-based correlations in the way described above. A reasonable approach is then to 

combine spread-based correlation matrix in some way with the equity-based correlation 

so as to create a more accurate estimate of the correlation structure of the complete set 

of factors. 

  

The third task we, therefore, need to address is that of incorporating the spread 

correlation estimates into a larger matrix of equity correlations. It is not possible simply 

to replace sub-matrices within an estimated correlation matrix with a correlation matrix 

estimate generated using some other technique. The reason is that the resulting matrix 

will generally not be positive definite and so will not be useable in other statistical 

exercises required in credit risk modelling such as the generation of correlated random 

variables. 

 

The approach we suggest consists of updating a matrix of equity-based correlations 

using the information contained in the spread correlation matrix by minimizing a 

quadratic distance function between a parameterised covariance matrix and the 

estimated equity- and spread-based matrices. The parameterised covariance function is 
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assumed to have a factor structure since this provides a simple way of limiting the 

number of parameters to be fitted while maintaining positive definiteness.  

 

To be precise, let E denote a 176x176 matrix of correlation coefficients for a large set 

of country and industry equity indices.2 Let S denote an 18x18 correlation matrix 

estimated from spreads. Let E* denote the parameterised 176x176 estimator of E. Let 

 denote the 18x18 sub-matrix of E* with rows and columns correspond to the 

countries in S.  

*
SE

 

Because all the matrices we encounter are symmetric and have unit diagonal elements, 

we can restrict our attention to elements contained in the lower diagonal part. The 

vech(.) operator applied to a matrix yields a the lower diagonal part of the matrix (i.e., 

the elements below the leading diagonal) in a vectorized form in which columns are 

stacked one above the other starting from the left-most column.  

 

One may obtain an estimate E* of E by minimizing the following function over the 

elements of the vectors b1, b2, .. , bN. 

[ ] ( )[ ]2*2 )()(1)(*)( SvechEvechEvechEvechL S −−+−= λλ  

where  and Q is a matrix having  in the diagonal 

element on the ith row, and zeros off the diagonal. 

∑=
+=

N

i ii QbbE
1

'* 2
,

2
2,

2
1, ..1 Niii bbb −−−−

 

4.Results 

Spread Estimates 

Spreads for the different sovereigns are extracted from bond prices for all the available 

days in the data set. The periods in which bond prices are available are listed in Table 1. 

Few of the bond price series have prices observed on every day in the periods specified 

in Table 1. The numbers of daily (working day) observations available for each bond is 

shown in Table 2. Countries with large numbers of observations include Argentina, 

Brazil, China, Indonesia, Russia and Portugal. Countries such as Costa Rica with 

relatively few observations are likely to produce less reliable correlation estimates.  

 
                                                 
2 In fact, the 176 include a small number of commodity price indices as well. 
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Examples of the spread time series are shown for Russia in Figure 1, and for China and 

Argentina in Figure 2. The Russian and Asian crises are clearly identifiable from the 

correlated jumps in the estimated spreads.  

 

Correlation Estimates 

Estimates of one-year spread correlations are shown in Table 3. The correlations are 

virtually all positive and the over all average spread correlation between the emerging 

market countries (i.e., the average of available entries off the diagonal in the correlation 

matrix) is 0.45. Some correlations for pairs of countries that have limited overlapping 

estimated spread data are shown in Table 2 as not available. No correlations were 

estimated for Mexico or Costa Rica because the numbers of overlapping observations with 

most other countries were too few. 

 

The estimates seem quite sensible in most cases. For example, Argentina spreads are 

closely correlated with Brazil for example, and more weakly correlated with European 

countries such as Hungary, Iceland etc. Some correlations like the relatively high 

correlation between Lithuania and Argentina seem less reasonable. 

 

Equity correlations for the countries for which we estimate spread correlations are shown 

in Table 4. It is interesting that some features of the spread correlations that appear 

surprising reappear in the equity correlations. For example, equity returns for China and 

Argentina are relatively closely just as are Chinese and Argentine spreads. The same is true 

for Russian and Argentine equity returns and spreads.  

 

Over all comparisons between the equity and the spread correlations are shown in Table 5. 

For the 18 countries for which we have both spread and equity correlations the average 

equity spread correlations is 49.56%, which is slightly lower but reasonably close to the 

average of the available spread correlations, i.e., 45.27%.  

 

Merging Spread- and Equity-Based Correlation Estimates 

The estimated spread correlation matrix reported in Table 3 is not positive definite. This is 

not surprising because the elements of the correlation matrix are calculated using different 

sample periods. But the observation motivates the fitting of the correlation matrix to a 
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parameterised matrix that is positive definite so it can be used in credit risk modelling to 

generate correlated random numbers.  

 

The most convenient positive definite correlation matrix parameterisation is that described 

in the last section in which it is assumed that the correlation matrix is that of a vector of 

random variables satisfying a factor structure. In this case, the nxn dimensional correlation 

matrix may be written as  where the b∑=
+

N

i ii Qbb
1

' i are n-dimensional vectors and Q is a 

matrix having  in the diagonal element on the ith row, and zeros off 

the diagonal. 

2
,

2
2,

2
1, ..1 Niii bbb −−−−

 

We minimize the distance function given in the last section with respect to the bi assuming 

different numbers of factors (i.e., different values of N in the above notation). A larger 

number of factors implies a larger number of parameters to fit the correlation matrix and 

hence a better approximation. Having minimized the distance function, one obtains a set of 

fitted vectors and a fitted correlation matrix ib̂ ∑=
+

N

i ii Qbb
1

ˆ'ˆˆ . 

  

One way to measure the accuracy of fitted correlation matrices is to see how rapidly they 

stabilize as one increases the number of bi’s, i.e., N. Figure 3 shows the ratio of the ordered 

eigenvalues of matrices fitted with 1, 2, and 3 factors to the ordered eigenvalues of a 

matrix fitted with 4 factors. It is noticeable that the ratios settle down rapidly to values just 

above unity for the 3-factor case. This suggests that the approximation is reasonably close. 

 

Another way to show how close the fitted matrix is to the approximating matrix is to 

examine the average discrepancy between the individual correlations in the original equity 

factor correlation matrix for 176 factors and the corresponding individual correlations in 

the fitted matrix. Figures 4-7 show histograms of the differences between the equity and 

the fitted correlations. 

 

Lastly, one may examine the comparisons in average correlations contained in Table 3. 

The average correlation for all 67 equity index factors for countries in our dataset is 

32.56% and this is exactly equal to the average of the fitted matrix for country correlations 

based on four factors. The average correlation for the large matrix of 176 country and 
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industry equity factors and commodity prices is 28.59%. The average correlation for the 

fitted matrix with equity and spread correlations merged assuming four factors is 28.65. 

These results suggest (i) that four factors fit the correlation structure reasonably well, (ii) 

that the spread correlations are on average slightly lower than the equity indices for the 

same countries although not wholly out of line.   
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Figure 1 - Spreads for a Russian Government Bond 
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Figure 2 - Spreads for Argentine and Chinese Government Bonds 
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Figure 4 - Error distributions of the difference between the original factor 

correlation matrix and the one estimated with 1 factor 
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Figure 5 - Error distributions of the difference between the original factor 

correlation matrix and the one estimated with 2 factors 
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Figure 6 - Error distributions of the difference between the orginal factor 

correlation matrix and the one estimated with 3 factors 
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Figure 7 - Error distributions of the difference between the original factor 

correlation matrix and the one estimated with 4 factors 
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Table 1 – Bond Issues Included in the Study 

Country Coupon Rate (%) Maturity Date First Obs Last Obs. 
Argentina 8.375 20-Dec-03 23-Sep-94 5-Dec-00

Brazil 8.875 05-Nov-01 22-Nov-96 5-Dec-00
China 6.625 15-Jan-03 23-Jan-96 5-Dec-00

Columbia 7.250 15-Feb-03 14-Feb-96 5-Dec-00
Hungary 8.800 01-Oct-02 1-Feb-93 16-Dec-99
Iceland 6.125 01-Feb-04 3-Feb-94 5-Dec-00

Indonesia 7.750 01-Aug-06 26-Jul-96 6-Nov-00
Mexico 8.500 15-Sep-02 11-Jan-93 5-Dec-00
Russia 3.000 14-May-03 28-Jun-96 5-Dec-00

Slovenia 7.000 06-Aug-01 22-Jul-96 5-Dec-00
Thailand 8.250 15-Mar-02 25-Mar-92 28-Feb-00

Costa Rica 8.000 01-May-03 23-Apr-98 11-Oct-00
Croatia 7.000 27-Feb-02 6-Feb-97 5-Dec-00
Greece 6.950 04-Mar-08 27-Feb-98 5-Dec-00

Lithuania 7.125 22-Jul-02 8-Jul-97 5-Dec-00
Philippines 8.875 15-Apr-08 2-Apr-98 5-Dec-00

South Korea 8.875 15-Apr-08 9-Apr-98 5-Dec-00
Tunisia 7.500 19-Sep-07 26-Feb-99 5-Dec-00

Venezuela 9.250 15-Sep-27 11-Sep-97 5-Dec-00
Portugal 5.750 08-Oct-03 20-Sep-93 5-Dec-00
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Table 2 - Spread Statistics 

Country Mean(%) Std. Dev. Max Num. Of obs. 
Argentina 4.323 1.613 10.689 1490 

Brazil 3.304 2.358 17.741 1037 
China 1.077 0.554 7.316 1267 

Columbia 2.843 1.618 9.781 898 
Hungary 0.981 0.416 3.267 635 
Iceland 0.549 0.241 2.291 965 

Indonesia 4.785 3.373 17.083 1012 
Mexico 2.987 2.246 14.050 708 
Russia 21.425 20.430 77.401 998 

Slovenia 0.686 0.234 1.858 1085 
Thailand 1.387 1.133 8.313 782 

Costa Rica 2.126 0.733 3.957 178 
Croatia 2.979 1.470 9.229 882 
Greece 0.878 0.295 7.438 721 

Lithuania 2.484 1.042 7.088 710 
Philippines 3.835 1.234 9.206 687 

South Korea 3.563 1.520 9.859 690 
Tunisia 1.706 0.431 8.225 461 

Venezuela 7.416 2.377 17.089 825 
Portugal 0.321 0.229 6.880 1872 
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Table 1 - Equity Correlation Matrix 

     
                 

Argen Brazil China Colu Greec Hung Indon S. K. Philip Russ Thai 
 

Vene Croat Lithu Slove
 

Iceld Portu  Tunis
Argentina 1.00 0.88 0.54 0.71 0.39 0.71 0.64 0.45 0.36 0.80 0.59 0.78 0.63 0.52 0.15 0.43 0.30 0.48
Brazil 0.88                  

                  
                   

                  
                   

                   
                

                  
                  

                 
                  

                  
                   
                

                  
                

                

1.00 0.51 0.64 0.38 0.64 0.69 0.43 0.41 0.88 0.54 0.75 0.66 0.61 0.16 0.54 0.34 0.50
China 0.54 0.51 1.00 0.26 0.20 0.12 0.52 0.63 0.35 0.54 0.57 0.63 0.20 0.22 0.00 0.20 -0.20 0.09
Columbia

 
0.71 0.64 0.26 1.00 0.20 0.71 0.34 0.25 0.09 0.72 0.38 0.74 0.66 0.66 0.19 0.25 0.27 0.63

Greece 0.39 0.38 0.20 0.20 1.00 0.34 0.61 0.34 0.49 0.15 0.22 0.08 0.05 0.21 0.70 0.28 0.29 -0.04
Hungary 0.71 0.64 0.12 0.71 0.34 1.00 0.31 0.01 0.11 0.70 0.21 0.60 0.75 0.58 0.39 0.25 0.76 0.66
Indonesia

 
0.64 0.69 0.52 0.34 0.61 0.31 1.00 0.75 0.80 0.53 0.76 0.42 0.30 0.26 0.16 0.36 0.03 0.10

S. Korea 0.45 0.43 0.63 0.25 0.34 0.01 0.75 1.00 0.77 0.31 0.87 0.37 0.21 0.03 -0.15 0.29 -0.38 -0.02
Philippines

 
0.36 0.41 0.35 0.09 0.49 0.11 0.80 0.77 1.00 0.22 0.80 0.14 0.25 0.00 0.05 0.13 -0.10 0.03

Russia 0.80 0.88 0.54 0.72 0.15 0.70 0.53 0.31 0.22 1.00 0.47 0.86 0.76 0.72 0.05 0.38 0.34 0.61
Thailand 0.59 0.54 0.57 0.38 0.22 0.21 0.76 0.87 0.80 0.47 1.00 0.49 0.43 0.15 -0.21 0.24 -0.20 0.17
Venezuela

 
0.78 0.75 0.63 0.74 0.08 0.60 0.42 0.37 0.14 0.86 0.49 1.00 0.68 0.63 -0.01 0.27 0.18 0.54

Croatia 0.63 0.66 0.20 0.66 0.05 0.75 0.30 0.21 0.25 0.76 0.43 0.68 1.00 0.57 0.07 0.33 0.42 0.57
Lithuania 0.52 0.61 0.22 0.66 0.21 0.58 0.26 0.03 0.00 0.72 0.15 0.63 0.57 1.00 0.23 0.29 0.37 0.43
Slovenia

 
0.15 0.16 0.00 0.19 0.70 0.39 0.16 -0.15 0.05 0.05 -0.21 -0.01 0.07 0.23 1.00 0.03 0.48 0.05

Iceland 0.43 0.54 0.20 0.25 0.28 0.25 0.36 0.29 0.13 0.38 0.24 0.27 0.33 0.29 0.03 1.00 0.15 0.03
Portugal

 
0.30 0.34 -0.20 0.27 0.29 0.76 0.03 -0.38 -0.10 0.34 -0.20 0.18 0.42 0.37 0.48 0.15 1.00 0.43

Tunisia 0.48 0.50 0.09 0.63 -0.04 0.66 0.10 -0.02 0.03 0.61 0.17 0.54 0.57 0.43 0.05 0.03 0.43 1.00



  
                   

Argen Brazil China Colu Greec Hung Indon S. K.  Philip Russ Thai Vene Croat Lithu Slove Iceld Portu Tunis
Argentina 1.00 0.83 0.67 0.47 0.40 0.39 0.56 0.60 0.70 0.61 0.16 0.79 0.58 0.70 0.61 0.15 0.36 0.63
Brazil 0.83                  

                   
                  

                 
                   

                  
                  

                  
                 

                  
                   

                  
                   
                  

          
                  

                  

1.00 0.77 0.56 0.44 0.62 0.76 0.63 0.71 0.68 0.32 0.82 0.62 0.74 0.69 0.09 0.33 0.73
China 0.67 0.77 1.00 0.43 0.67 0.54 0.81 0.59 0.63 0.74 0.39 0.81 0.74 0.79 0.68 0.12 0.57 0.91
Columbia

 
0.47 0.56 0.43 1.00 0.42 0.51 0.44 0.24 0.37 0.45 0.05 0.51 0.49 0.37 0.44 -0.02 0.30 0.46

Greece 0.40 0.44 0.67 0.42 1.00 0.85 0.50 0.58 0.60 0.30 0.52 0.38 0.47 0.45 0.80 -0.63 0.94 0.88
Hungary 0.39 0.62 0.54 0.51 0.85 1.00 0.50 0.73 0.75 0.31 0.55 0.63 0.80 0.82 0.68 0.17 0.39 n/a
Indonesia

 
0.56 0.76 0.81 0.44 0.50 0.50 1.00 0.72 0.85 0.56 0.64 0.76 0.69 0.74 0.69 -0.13 0.27 0.59

S. Korea 0.60 0.63 0.59 0.24 0.58 0.73 0.72 1.00 0.95 0.08 n/a 0.65 0.50 0.45 0.70 n/a 0.38 0.88
Philippines

 
0.70 0.71 0.63 0.37 0.60 0.75 0.85 0.95 1.00 0.22 n/a 0.70 0.49 0.47 0.73 -0.38 0.39 0.71

Russia 0.61 0.68 0.74 0.45 0.30 0.31 0.56 0.08 0.22 1.00 -0.11 0.76 0.52 0.71 0.45 0.83 0.42 0.80
Thailand 0.16 0.32 0.39 0.05 0.52 0.55 0.64 n/a n/a -0.11 1.00 0.37 0.79 0.51 0.54 -0.49 0.22 n/a
Venezuela

 
0.79 0.82 0.81 0.51 0.38 0.63 0.76 0.65 0.70 0.76 0.37 1.00 0.61 0.69 0.68 0.03 0.33 0.56

Croatia 0.58 0.62 0.74 0.49 0.47 0.80 0.69 0.50 0.49 0.52 0.79 0.61 1.00 0.87 0.46 0.15 0.16 0.59
Lithuania 0.70 0.74 0.79 0.37 0.45 0.82 0.74 0.45 0.47 0.71 0.51 0.69 0.87 1.00 0.53 0.42 0.35 0.49
Slovenia

 
0.61 0.69 0.68 0.44 0.80 0.68 0.69 0.70

 
0.73 0.45 0.54 0.68 0.46 0.53 1.00 -0.31 0.62 0.25

Iceland 0.15 0.09 0.12 -0.02 -0.63 0.17 -0.13 n/a -0.38 0.83 -0.49 0.03 0.15 0.42 -0.31 1.00 -0.38 n/a
Portugal

 
0.36 0.33 0.57 0.30 0.94 0.39 0.27 0.38 0.39 0.42 0.22 0.33 0.16 0.35 0.62 -0.38 1.00 0.85

Tunisia 0.63 0.73 0.91 0.46 0.88 n/a 0.59 0.88 0.71 0.80 n/a 0.56 0.59 0.49 0.25 n/a 0.85 1.00

Table 2 - Spread Correlation Matrix 
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Table 3 - Average Correlations 

 

 All factors Country factors Country factors 
with spreads available 

Average equity 
correlations 

0.286 0.326 0.496 

Average spread 
correlations 

  0.453 

 

Table 4 - Average correlation for the whole factor fitted correlation 

matrix and for the fitted sub-matrix for the country factors 

Numbers of factors Large Small 
1 0.28035 0.29744 
2 0.28580 0.30124 
3 0.28662 0.32277 
4 0.28654 0.32567 
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