
 
 

Research Paper 
 
 
 

Dynamic Loan Losses: Estimation and 

Implications 

 
 
 

 
 
 
 
 
 
Date:2006 
Reference Number:6/3 
 

 



 



DYNAMIC LOAN LOSS DISTRIBUTIONS:

ESTIMATION AND IMPLICATIONS

Robert Lamb

Imperial College

London

William Perraudin

Imperial College

London

First version: August 2005
This version: August 2006∗

Abstract

This paper develops new dynamic versions of Vasicek’s widely used single
factor, loan loss distribution, and employs them to analyze capital and risk in
loan portfolios. We show that ignoring loan loss dynamics leads to a system-
atic upward bias in capital calculations. We calculate the impact of this bias
for aggregate US loan loss rates and compare our results with the calibration
implicit in the Basel II capital charges. Backing out innovations from different
loan loss series, we study the correlations between six different loan sectors:
corporate, credit card, other retail, agricultural, leases and mortgages.
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1 Introduction

Estimates of the distribution of losses on credit portfolios are important inputs to

capital decisions by lenders and to the design of financial regulations by supervisors.

The most widely used model of loan losses is that suggested by Vasicek (1991). Under

this approach, defaults by individual obligors are driven by realizations of latent

random variables. If the latent variable for an exposure falls below a given threshold,

the obligor defaults. Dependence between defaults by different obligors is introduced

by allowing the corresponding latent variables to be correlated. As the number of

exposures in the portfolio increases to infinity, Vasicek shows that the distribution of

the loss rate (the fraction of obligors that default) converges to a simple closed form

expression.

The task of calibrating the loss rate models reduces to that of estimating the

correlation of the latent variables. To see why this is true, note that as the number

of credit exposures in a portfolio increases, if defaults on the individual exposures are

independent, the fraction of defaults will converge to a constant. Conversely, if the

default rate fluctuates over time, it must reflect correlation in the underlying latent

variables. Starting with measures of the time series variability of aggregate portfolio

default rates, one may therefore deduce correlation parameters for the underlying

latent variables.

Vasicek’s loan loss distribution has been widely employed by academic and indus-

try researchers in modeling credit portfolio losses. It has also served as the basis for

the capital charge formulae or “capital curves” contained in the Basel II proposals.

Any bank regulated under Basel II will calculate the regulatory capital it must hold

against a particular credit exposure by plugging variables describing the exposure

(such as default probability and loss given default) into the relevant formula.

The problem with basing risk measures and capital calculations on the simple

Vasicek model, however, is that it is a purely static model in which loan losses are

realized randomly and unpredictably over time. In practice, default rates on portfolios

move in a very predictable way from period to period. The probability of a high (low)

default rate in year t is much greater if the default rate was high (low) in t− 1. But

this implies that the risk faced by a bank in year t is much less if it knows what the

default rate was the period before.

Unfortunately, a common practice in benchmarking the Vasicek model from data
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is to ignore the time series properties of loan losses, in particular their predictability,

and to deduce correlation parameters from the unconditional distribution of aggregate

annual loss rates. This approach exaggerates the risk faced by lenders.

The contributions of this paper are

1. To generalize the Vasicek model to allow for autocorrelated loan losses. We

formulate models in which the underlying factors driving the latent variables

are autoregressive processes and we show how the transformed loss rates inherit

this time series structure.

2. To implement the model empirically using loan loss data for US banks. We apply

a Maximum Likelihood approach to aggregate portfolio loss rates to deduce

parameters of the latent variable factors.

3. To compare the implied capital with the regulatory capital charges implied by

the Basel II proposals. The Basel capital formulae are directly based on the

single factor model proposed by Vasicek. Our model nests the Vasicek model

so we can show precisely how capital calculations are affected by correctly in-

corporating autocorrelation in the loss rates. The calibration and estimation

exercises we perform also demonstrate that even leaving the autoregressive prop-

erties of loss rates out of account, in the case of retail portfolios, the Basel II

parameterization is much more conservative than is justified by the data.

4. To back out the innovations in losses for the six different loan categories we

study and to examine the correlation structure. This sheds light on the degree

to which banks may diversify by extending loans to different credit sectors.

Again, we compare our results with the Basel capital charges.

Our study is related to the recent empirical literature on modeling loss rate and

ratings transitions. Several papers within this literature employ static one-period

Vasicek models to investigate loan loss data and to analyze the capital implications

for financial firms. Perli and Neyda (2004) compare several different portfolio credit

risk models designed for retail portfolios and compare the results obtained with the

capital charges implied by the current Basel II proposals. de Andrade and Thomas

(2004) use structural and reduced form credit risk models to investigate Brazilian

credit bureau scores. Dietsch and Petey (2004) examine whether Small and Medium

Enterprise (SME) credit exposures resemble more retail or corporate exposures using
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French and German SME data by estimating asset correlations using the Vasicek

distribution. Cowan and Cowan (2004) calculate default correlations for sub-prime

residential mortgages. None of these papers allows for the time series behavior of

losses in their statistical modeling or the implications they draw for risk and capital.

Another relevant literature concerns the cyclical pattern of loss rates and ratings

transition probabilities. Early studies include Wilson (1997a), Wilson (1997b), and

Nickell, Perraudin, and Varotto (2000). Allen and Saunders (2003) provide a survey.

Recent contributions include Bangia, Diebold, Kronimus, Schagen, and Schuermann

(2002), Couderc, Renault, and Scaillet (2003), Gorton and He (2003), Koopman and

Lucas (2005), Koopman, Lucas, and Klaassen (2005), McNeil and Wendin (2005b),

and McNeil and Wendin (2005a). As one might expect, this literature more directly

examines the time series nature of loss and transition rates.

More broadly, our study is related to the substantial and growing literature on

modeling correlations in credit portfolios. Embrechts, Lindskog, and McNeil (2003),

Frey and McNeil (2003), and Kiesel and Schmidt (2004) set out general results. Ap-

plications to CDO valuation include Li (2000), Duffie and Garleanu (2001), Hull and

White (2004), Laurent and Gregory (2003), the studies surveyed in Burtschell, Gre-

gory, and Laurent (2005), Sidenius, Piterbarg, and Anderson (2004) and Schonbucher

(2005).

Of these papers, many focus on one-period loss distributions, i.e., simple static

models (see Embrechts, Lindskog, and McNeil (2003), Frey and McNeil (2003), Schon-

bucher (2004), Schonbucher (2002) and Wehrspohn (2003), for example). Where a

fully dynamic model is required (in order, say, to price a CDO with a potentially

complex cash flow waterfall), a joint distribution of the times to default is used to

simulate dependent default times (see Li (2000) and subsequent papers that have

followed his approach).

Hazard rate models for pricing structured products such as Duffie and Garleanu

(2001) possess fully specified dynamic structure. In a recent contribution, Das, Duffie,

Kapadia, and Saita (2005) investigate the ability of simple hazard rate models to ex-

plain correlations in equity-based default probabilities. Hanson, Pesaran, and Schuer-

mann (2006) examine the time series structure of equity factors within structural

credit risk models, relating the dynamics to conditioning macro variables.

In the last section of the paper, we back out the innovations in loan losses for

different sectors and study their correlations. This is an important topic since little
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is known empirically about the how important diversification effects are across the

different lending divisions of banks. Recent papers have begun to study correlations

in credit portfolios. Heitfield and Chomsisengphet (2005) look at sector correlations

in equity factors used in typical credit portfolio models. Varotto (2005) looks at sector

and country correlations in bond spreads.

Finally, our paper may be compared to other academic research that has com-

mented on features of the Basel II parameterization. Examples include Altman and

Saunders (2001), Kupiec (2001) and Perli and Neyda (2004).

2 Loan Loss Models

2.1 Loan Losses with Autocorrelation and Trends

Suppose there are n obligors. If he is not in default at t− 1, the ith obligor defaults

at t if a latent variable, Zi,t satisfies Zi,t < −c for a constant c.

Suppose that the Zi,t for t = 0, 1, 2, . . . and i = 1, 2, . . . , n satisfy a factor structure

in that:

Zi,t =
√

ρXt +
√

1− ρεi,t . (1)

Assume that:

Xt =
√

βXt−1 +
√

ληt (2)

where εi,t and ηt are standard normal and independent for pairs of obligors i and j

and for all dates t.

Typically, when latent variable models such as that described by equation 1 are

formulated, the shocks are assumed to have unit variance. To preserve comparability

with other models, we construct our model so that Xt has unit unconditional variance.

Since

Xt =
∞∑
i=0

(√
β
)i√

ληt−i (3)

Variance(Xt) =
∞∑
i=0

βiλ =
λ

1− β
(4)

if we choose λ = 1− β, the unconditional variance of Xt is unity and

Xt =
√

βXt−1 +
√

1− βηt . (5)
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If Xt has unit variance unconditionally, the Zi,t has a standard normal uncondi-

tional distribution. The unconditional probability of default for the ith obligor, q,

then satisfies:

Φ−1(q) = − c . (6)

Now, consider the probability of default for i in our model conditional on information

at t− 1. Default occurs when:

√
ρXt +

√
1− ρεi,t < − c (7)

√
ρ
√

1− βηt +
√

1− ρεi,t < − c − √
ρ
√

βXt−1 . (8)

The left hand side of equation (8) is distributed as N(0, 1 − ρβ). So the default

probability conditional on information at t− 1 is:

pi,t = Φ

(−c−√ρ
√

βXt−1√
1− ρβ

)
. (9)

Conditional on the common factor ηt and on Xt−1, defaults are independent across

individual obligors. So, denoting P (k, n) as the probability of observing k defaults

out of n obligors conditional on Xt−1 and removing the conditioning of the shock, ηt,

by integrating over its support, gives:

P (k, n) =

(
n

k

)∫ ∞

−∞
Φ

(−c−√ρ
√

βXt−1 −√ρ
√

1− βηt√
1− ρ

)k

×
[
1− Φ

(−c−√ρ
√

βXt−1 −√ρ
√

1− βηt√
1− ρ

)]n−k

dΦ(ηt) . (10)

Adopting the change of variables:

s(η) ≡ Φ

(−c−√ρ
√

βXt−1 −√ρ
√

1− βη√
1− ρ

)
. (11)

Then:

P (k, n) = −
(

n

k

)∫ 1

0

sk (1− s)n−k dΦ

(
− (√

1− ρΦ−1(s) + c +
√

ρ
√

βXt−1

)
√

ρ
√

1− β

)
.(12)

But:

− dΦ(f(s)) = dΦ(−f(s)) (13)

so

P (k, n) =

(
n

k

)∫ ∞

−∞
sk (1− s)n−k dW (s) , (14)
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where

W (s) ≡ Φ

(√
1− ρΦ−1(s) + c +

√
ρ
√

βXt−1√
ρ
√

1− β

)
(15)

Now, consider what happens as n → ∞. Let θ denote the fraction of the pool that

defaults. Then:

lim
n→∞

[nθ]∑
i=0

P (i, n) =

∫ 1

0


 lim

n→∞

[nθ]∑
i=0

(
n

i

)
si(1− s)n−i


 dW (s) (16)

=

∫ 1

0

1(s < θ)dW (s) (17)

= W (θ)−W (0) = W (θ) . (18)

Hence, the loss distribution conditional on Xt−1 is:

W (θt) ≡ Φ

(√
1− ρΦ−1(θt)− Φ−1(q) +

√
ρ
√

βXt−1√
ρ
√

1− β

)
. (19)

So the transformed loss rate θ̃t ≡ Φ−1(θt) is Gaussian and satisfies:

θ̃t ≡ Φ−1(θt) ∼ N

(
1√

1− ρ

[
Φ−1(q)−√ρ

√
βXt−1

]
,

ρ(1− β)

1− ρ

)
. (20)

One may express this as:

θ̃t =
1√

1− ρ

[
Φ−1(q)−√ρ

√
βXt−1

]
−

√
ρ
√

1− β√
1− ρ

ηt (21)

where ηt is the shock in equation (2) above. Note that the negative sign before the

last term enters because of our change of variable −dΦ(η(s)) = dΦ(−η(s)).

Solving (21) for Xt−1, we obtain:

Xt−1 =
1√
ρ
√

β

[
Φ−1(q)−

√
1− ρθ̃t −√ρ

√
1− βηt

]
. (22)

Lagging this equation and substituting in

Xt−1 =
√

βXt−2 +
√

1− βηt−1 (23)

yields the following result:

Proposition 1 Suppose that an individual obligor who is not in default at t − 1

defaults at t if a latent variable Zi,t < −c. Assume that the Zi,t satisfy the Gaussian
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autoregressive factor structure given by equations (1) and (2). Let θt denote the loss

rate, i.e., the fraction of obligors that default. As n →∞, the transformed loss rate,

θ̃t ≡ Φ−1(θt) converges to the following Gaussian order-1 autoregressive process:

θ̃t ≡ 1√
1− ρ

Φ−1(q) +
√

β

[
θ̃t−1 − 1√

1− ρ
Φ−1(q)

]
−

√
ρ
√

1− β√
1− ρ

ηt . (24)

Hence, the transformed loss rate at t conforms to the following Gaussian distribution:

θ̃t ≡ Φ−1(θt) ∼ N

((
1−√β

)
√

1− ρ
Φ−1(q) +

√
βθ̃t−1 ,

ρ(1− β)

1− ρ

)
. (25)

Now, suppose that the cut-off point for default evolves deterministically over time in

that an obligor not in default at t− 1 defaults at t if Zi,t < −c(t) for a function c(.).

Define qt ≡ Φ(−c(t)). Then, one may easily show that θ̃t follows the process

θ̃t ≡ 1√
1− ρ

Φ−1(qt) +
√

β

[
θ̃t−1 − 1√

1− ρ
Φ−1(qt)

]
−

√
ρ
√

1− β√
1− ρ

ηt . (26)

This process is autoregressive around a non-linear trend.

2.2 The General AR Case

The above analysis may be generalized to allow for any autoregressive process for the

factor, Xt. Suppose that:

Xt =
√

αB(L)Xt−1 +
√

1− αηt (27)

where

B(L) Xt−1 ≡
M∑
i=1

ξiXt−i . (28)

Choose
√

α, ξi i = 1, 2, . . . , M so that the unconditional variance of Xt is unity.

Similar arguments to those used before imply:

θ̃t =
1√

1− ρ
Φ−1(qt)−√ρ

√
αB(L)Xt−1 −

√
ρ
√

α√
1− ρ

ηt . (29)

If the roots of the polynomial lag operator B(L) lie outside the unit circle, then:

Xt−1 = B−1(L)

(
1√
ρ
√

α

[
Φ−1(qt)−

√
1− ρθ̃t −√ρ

√
1− αηt

])
(30)
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Lagging this equation by one period, substituting for Xt−1 and Xt−2 in:

Xt−1 =
√

αB(L)Xt−2 +
√

1− αηt−1 , (31)

and then rearranging, one obtains:

Proposition 2 When Xt follows the general autoregressive process in equation (27)

θ̃t =
1√

1− ρ
Φ−1(qt) +

√
αB(L)

[
θ̃t−1 − Φ−1(qt−1)√

1− ρ

]
−

√
ρ√

1− ρ

√
1− αηt . (32)

3 Estimation

3.1 Data

To implement our model, we employ quarterly aggregate charge-off data for all US

banks for the period 1973 to 2005. This is published by the Federal Reserve Board.

Note, that the data is presented net of recoveries. We therefore scale each of the

loss series by dividing through by the LGD for each series. The assumed LGDs were

taken from the Basel Committee on Banking Supervision (1999) and can be found in

Table 2.

A more standard approach would possibly be to provide estimations using the

same series but in an annualized form. However, we would only have twenty annual

observations, so the statistical reliability of results obtained using this data would

then be an issue. We therefore report results for the quarterly series.

Note that some past studies have focussed on arrears rates. See, for example,

Whitley, Windram, and Cox (2004) who employ APACS arrears data and Black and

Morgan (1998) and Dunn and Kim (1999) who use survey data from the Federal

Reserve Board’s Survey of Consumer Finances. We prefer to focus on bank charge-

offs because these more closely resemble defaults as perceived by the banks.

There may be problems with charge-off rates. When a new manager takes over

a division of a bank, he or she may wish to write off delinquent and semi-delinquent

loans in order to be able to demonstrate a better performance subsequently. One may

hope that the fact that we employ data that aggregates charge-offs from many banks

will mitigate this problem.

Plots of the six charge-off rate series are shown in Figure 1. It is apparent that

the credit card charge-off rate has a long-run trend around which it has fluctuated
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historically. Other series appear to cycle but exhibit less evidence of a trend. In the

exercises we report below, we de-trend the credit card series before performing other

statistical analysis. This is a simple alternative to freely estimating a loss rate model

with both a trend and an autoregressive component.

In general, visual inspection of the series seems to confirm the presence of trends

and cyclical behavior in loss rates, reinforcing the basic point of this paper that the

unconditional and conditional distributions of charge-offs are very different.

3.2 Estimating the Model

To estimate the simple static Vasicek loss distribution, one may follow one of two

approaches. The first of these has been used to our knowledge in the industry and

by regulators and consists of solving a simple moment condition for the implicit

correlation parameter. To be specific, if θ is the fraction of loans that default in an

infinitely granular pool satisfying the Vasicek assumptions, one may show that:

E(θ2) = Φ2

(
Φ−1(E(θ)), Φ−1(E(θ)), ρ

)
. (33)

Here, Φ2(x1, x2, ρ) is the joint distribution function for two standard normals, x1 and

x2, with a correlation parameter ρ. Given estimates of the first and second moments

of aggregate losses from a sample, one may estimate the correlation parameter by

inverting equation (33) to obtain ρ.

The second approach one may take uses the fact that under the Vasicek assump-

tions, the transformed loss rate, θ̃t is normally distributed with a standard deviation

that depends in a simple way on the asset correlation. See equation (25) for the

dynamic distribution case. So regressing θ̃t ≡ Φ−1(θt) on a constant, one may infer

the unconditional default probability from the coefficient on the constant and the

correlation parameter ρ from the standard error of the regression residuals.

In this paper, we follow the second approach. It is easy to extend this to cases

in which the transformed loss rate is autoregressive simply by regressing on lagged

θ̃t as well as on a constant. As we saw in equation (25), the transformed loss rate

is conditionally Gaussian, and, in the AR(1) case, one may infer the unconditional

default probability q, the square of the factor loading on its lagged level, β, and the

correlation parameter ρ from the regression constant, the regression coefficient on θ̃t−1

and the standard error of the regression residuals.
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In the past, we have estimated correlation parameters using both methods and

obtained almost identical estimates.

3.3 Results

The estimation results for the various quarterly series are contained in Table 1. The

first two rows show the unconditional mean and the unconditional standard deviations

of loss rates. Credit cards exhibit a much lower credit quality than the other loan

categories in that the mean loss is 2.27%. By contrast, agricultural loans, for example,

exhibit a loss rate of just 0.39%. But the volatility of the credit card loss rate (at

0.34%) is of a similar order of magnitude to the other categories. This initially

suggests that credit card loans have a more risky nature compared to the other loan

types. But, the main influence in the riskiness of a loan type (i.e. extreme events

such as all the credit holder default at once) is based upon the correlation parameter,

ρ.

Transforming the loss rate series by applying Φ−1(.) reveals that the credit card

transformed loss rate volatility is less than those for other series. This then translates

into a smaller correlation parameter for credit cards, 0.39%, compared to 12.86%

for agricultural and 7.32% for real estate. Other retail has a correlation parameter of

1.13% while corporate loans and leases (that are primarily corporate) have correlation

parameters of 4.79% and 6.05%. This shows that series that are of a similar nature

seem to display similar characteristics, a point that will be returned to in the common

factor decomposition section.

So, the mapping between loss rates, their volatilities and the correlation parameter

is complex and one cannot just judge the riskiness of a loan type based on the standard

loss series. It is from the volatility of the transformed series that the factor correlation

can be extracted and this parameter is the major influence upon rare events occurring.

In the lower part of Table 1, results are reported for models that include auto-

correlation. Introducing autocorrelation substantially reduces the standard errors of

the transformed loss rates. For example, it falls from 30.72% to 12.41% in the case

of All Real Estate loans. Perhaps surprisingly since they reflect the variability in loss

rates, the correlation parameters ρ are broadly comparable to those from the model

without autocorrelation. This does not mean, however, that the risk characteristics

of the loss rates is the same as the series are now mean-reverting.
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To appreciate the risk implications of mean reversion, note that if some variable

Yt is autoregressive of order 1 (AR(1)) then, omitting shocks for simplicity it may be

written as: Yt = c + bYt−1. So,

Yt − Yt−1 = c + (b− 1)Yt−1 = (1− b)(c/(1− b)− Yt−1) (34)

Suppose that (1 − b) > 0. Then if Yt−1 < c/(1 − b), Yt − Yt−1 will be positive and

otherwise it will be negative. Thus, Yt will gradually revert to the long run level of

c/(1 − b). A high value of (1 − b) implies rapid reversion of Yt to its long run level

while low 1− b implies slow reversion.

Note that the volatility of innovations in the factor equals
√

1− b2. Increasing b

decreases risk by reducing the volatility of innovations but slows the pace of reversion.

Long-term risk as measured by the unconditional volatility is constant because the

lower volatility of innovations is just offset by slower mean reversion.

To explain the risk associated with this autocorrelation model first note that the

unconditional volatility of the process has been fixed at unity. With an autocor-

related model, at any given time, the conditional volatility will be lower than the

unconditional case due to the the amalgamation of the risky shocks into the auto-

correlation term. The conditional case is therefore a weighted sum of the previously

realised shocks and an idiosyncratic term. By construction, the idiosyncratic term

has a volatility being equal to
√

1− b2 and so its volatility is less than one. As this is

the only risk in the conditional process, its risk will be lower than the unconditional

case.

Two limiting cases can help to explain the overall risk occurring with the autocor-

related process. If b = 0, then the autocorrelation process reduces to the static one.

In this case, the conditional risk will be equal to the unconditional risk. If, b = 1− ε

for a small ε > 0, then there is nearly no conditional volatility present. Nearly all of

the weight will be on the autocorrelation term and as described above the near zero

weight on the idiosyncratic risk term is the only driving factor for the volatility of

the process.

Over a short horizon, the value of b is also less important for risk. Indeed, over a

1-period horizon, risk is independent of b even though over a longer horizon it reduces

it.
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4 Capital Implications

4.1 Implied Capital

Recall that the Value at Risk for a portfolio held over a given horizon and with a

confidence level α is defined to be the loss that is exceeded on a fraction α of occasions.

Suppose that the bank that holds the credit card book sets its capital equal to the

Value at Risk of its portfolio as a whole.

Suppose that losses on the bank’s portfolio in period t are a function only of the

single risk factor described above, namely Xt. The Marginal Value at Risk (MVaRα)

for a single loan may be calculated as the expected loss on the exposure conditional

on Xt being at its α-quantile. But the expected loss is just equal to the probability

of default multiplied by the loss given default (LGD), i.e.,

MVaRα = LGD × Φ

(
Φ−1(p)−√ρ

√
βXt−1 −√ρ

√
1− βΦ−1(α)√

1− ρ

)
. (35)

But the probability of default conditional on information at t−1 is given by equation

(9). Substituting yields the proposition:

Proposition 3 Under the above assumptions, the Marginal Value at Risk for a single

loan, denoted MVaRα, is:

MVaRα = LGD × Φ

(√
1− ρβ

Φ−1(pt)−√ρ
√

1− βΦ−1(α)√
1− ρ

)
. (36)

4.2 Basel II Capital

The Basel II capital formulae are based on Unexpected Loss i.e., the MVaRα minus

the expected loss:

Basel Capital Formula = LGD × Φ

(
Φ−1(p) +

√
ρ
√

1− βΦ−1(α∗)√
1− ρ

)
− LGD × p.

(37)

where α∗ equals 1−α in our notation. Note here that the Basel formula is simplified by

the absence of the expression
√

1− ρβ and depends on p rather than the conditional

default probability pt. When β = 0 so the factor is no longer autocorrelated, the

latter term simplifies to unity and pt = p for all t. Since φ−1(α∗) = −φ−1(α), in this

case, the Basel capital formula equals the MVaRα expression in equation (36).
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4.3 Regulatory Implications

It is a straightforward exercise to relate capital charges as used by regulators and

banks if the data period is one year. We therefore convert the data from quarterly

series to their annual representations for the following capital calculations.

We calculate capital under the Basel II rules and based on MVaRs implied by

the estimated processes with and without autocorrelation. The Basel II calculation

assumes a point-in-time default probability as a parameter for their formulae. We

take the loss rate at the end of the sample period for this parameter as this can be

viewed as a proxy for the conditional default probability.

Table 2 reports the capital requirements calculated by all models. The top half of

the table displays the parameters assumed for the Basel II calculation. The lower half

of the table reports the capital for the three different cases. It is immediately apparent

that the capital implied by the autocorrelation case is less than the static case for

all series. For the Real Estate category, the implied capital for the autocorrelation

case is 0.28%, this is approximately 5 times less than the static case at 1.35%. Other

series are closer however. The credit card calculation implies 2.40% in the static case

and 2.22% in the autocorrelation case.

The Basel II capital comparisons are even more striking. In all cases with or with-

out autocorrelation the implied capital is substantially less than what Basel suggests.

As an example, the other consumer category implies 0.90% using the autocorrelation

model, 1.79% with the static model and 8.07% under the Basel II rules. In all cases

the order of magnitude is at least four times greater for the Basel II calculation than

the autocorrelation model and in some cases the difference is even greater.

This is not surprising in the case of long-lived assets like real estate, leases and

C&I as the Basel parameterization in these cases is based on economic-loss-mode

MVaRs from ratings-based models like Creditmetrics. (Default mode capital curve

formulae are just convenient functions that happens to have the right shape.) But

for short term assets including retail (especially credit cards), this difference in the

implied capital can be viewed as very important for banks and financial institutions

that hold such books.
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5 Factors and Correlations

5.1 Factors and Factor Shocks

From each transformed loss rate time series, one may use the equation

θ̃t =
Φ−1(q)−√ρXt√

1− ρ
. (38)

to infer the underlying factor value in each period. We calculate the factors driving

both the static and autocorrelation models for each loan category. In the autocorre-

lation case, we deduce the common factor innovations:1

ηt =
Xt −

√
βXt−1√

1− β
. (39)

Figure 2 shows the factor innovations over time. If the autocorrelation model is

correct then the first order lag should remove all time dependencies from the data

and the shocks should follow a white noise process. Inspection suggests that there

may be some clustering of shocks in Leases and Agricultural loans and possibly some

higher order autocorrelation in Credit Card receivables.

As a specification test, we perform normality tests on the innovations from the

different models (see Table 3). These include

1. The Liliefors test (a generalization of the Kolmogorov-Smirnov test). For each

potential value x, the Lilliefors test compares the proportion of values less than

x with the forecast number implied by the normal distribution. The maximum

difference, over all x, values is its test statistic. The asymptotic 95% quantile

for rejection of normality is: 0.0978.

2. The Jarque-Bera test. This assesses whether the sample skewness and kurtosis

differ to a statistically significant degree from their values under normality. We

generate confidence levels for the Jarque-Bera test using Monte Carlos rather

than using the asymptotically valid confidence level. The Monte Carlo confi-

dence level for rejection of normality is 5.99.

The Lilliefors test suggests rejection of normality in that four of the six sets of in-

novations fail the test at the 95% level. However, when we perform the Jarque-Bera

test, we find no rejections using the Monte-Carlo generated confidence level of 5.99.

1An initial value of X0 = 0 was assumed for each factor series.
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5.2 Factor Correlations

A key question is what are the correlations between the factors of the different cate-

gories of loan losses? The answer can help shed light on the degree to which diversi-

fying across different types of business will help a bank reduce its risk.

For the static model we calculate the correlation matrix of the factor series and

for the autocorrelation model we calculate the correlation matrix of the factor inno-

vations. Table 4 reports these matrices for quarterly data. (To save space, we do not

exhibit the correlation matrices for annual data that we also estimated.)

The correlation matrix for quarterly observations allowing for autocorrelation ap-

pears the most plausible. There are no negative elements and the pattern of corre-

lations is intuitively reasonable. We find that Credit Card losses are little correlated

with other loss categories except for Other Retail. All Real Estate is fairly highly cor-

related with other categories except for Credit Cards. The corporate loan categories.

Leases, C&I and Agricultural are reasonably highly correlated.

To analyze the pattern of correlation further, we decompose the quarterly corre-

lation matrix, in the two cases with and without autocorrelation, into their principal

components (see Table 5). To analyze how far the correlation matrix is from one with

a single or two factors, one may examine the magnitudes of the largest eigenvalues.

One may also see which of the loan loss categories seem to be driven by the different

factors.

The quarterly data results suggest that there are two dominant factors. All the

loan loss categories have positive loadings on the first of these, with Leases and C&I

having the largest loadings. This factor may be identified with the single credit risk

factor presumed by the Basel II parameterization.

The corporate loan categories, C&I and Leases have positive weights on the second

factor while the retail categories have negative weights. This second factor may

therefore be thought of as differentiating these two broad business sectors.

5.3 Correlation and Capital

As a final exercise, we calculate capital for two portfolios, the first primarily retail

and the second primarily corporate. Table 6 shows the portfolio weights for each

of the three portfolios on the six different loan categories, (i) a portfolio will equal
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weights in the six loan categories, (ii) a predominantly retail loan portfolio, (ii) a

predominantly corporate loan portfolio, and (iii) a “combined” portfolio, diversified

across these two broad sectors.

Our exercise consists of simulating the model that allows for autocorrelation 1

million times. For each portfolio, we simulate the model under three different as-

sumptions about correlation of factor innovations:

1. We suppose the innovations are perfectly correlated for all loan loss categories.

This assumption corresponds to the assumption implicitly used in Basel since

under Basel II capital is calculated for each line of business and then added up.

2. We suppose the innovations for different loan loss categories have zero pairwise

correlations.

3. We suppose that the correlations of loan loss innovations are those estimated

in this paper.

In Table 6, we report VaRs for a confidence level of 99.9% for the four portfolios.

The results show that going from zero to perfect correlation boosts capital by

about 70-80%. The estimated degree of correlation gives results that are about half

way from zero to perfect correlation. Broadly speaking, these results hold for all of

the portfolios although the rise in capital that results from increasing the degree of

correlation is greatest, as one might expect in the case of diversified portfolios like

our so-called “Combined Portfolio”.

6 Conclusion

This paper presents a generalization of a widely used Vasicek model of loan losses. Our

generalization allows for the dynamic evolution of loan loss distributions. We argue

that introducing dynamics is essential if such models are to be employed to analyze

real life data since loan losses exhibit clear signs of autocorrelation and trends.

Estimating our models using aggregate US loan loss data, we show that the capital

charges imposed on banks under Basel II are very conservative in the case of retail

exposures. We also examine the impact on economic capital of diversifying across

different broad sectors of the credit market. (As is well known, Basel II does not
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grant banks concessions in required capital for diversification across broad business

lines.)

Our analysis provides a framework and a set of tools for analyzing portfolio credit

risk at the aggregate, broad business line level. In future work, we intend to look

at conditional modeling of loan losses and its use in stress testing and at modeling

correlations for individual loan data.
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