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Abstract

This paper analyzes the joint distribution of changes in agency credit ratings.

We estimate both intra- and inter-industry correlations using Maximum Likelihood

techniques. The analysis is performed unconditionally and then conditional on de-

trended GDP. The latter estimates may be used for macro stress testing in which

the credit quality of a portfolio is simulated conditional on a hypothesized future

path of real output.
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1 Introduction

This study brings together two highly topical issues: credit correlation and condi-

tional modeling of credit quality dynamics. On the first of these issues, the credit crunch

has highlighted the need to improve understanding of correlation in bond and loan mar-

kets. Such correlations influence the value of structured products such as Asset Backed

Securities (ABS) and Collateralized Debt Obligations (CDO). They are also a key input

to credit portfolio models which may be used to assess the riskiness of a given financial

institution or of the banking system as a whole.

Agency credit ratings are a widely used measure of credit quality in bond and loan

markets. Ratings agencies such as Moody’s and Standard and Poor’s assign letter grade

ratings to credit instruments according to the likelihood that they will default in the

future. Historical data is available on the evolution of these ratings over time for a large

number of obligors. Furthermore, the capital accord Basel II encourages banks to use

internal or external rating system to calculate capital requirement for their credit port-

folio. Rating based models, thus, have become an industry standard approach in credit

risk management. As a result, it is important to study the credit market correlations

implicit in historical ratings histories.

On the second issue, conditional modeling of credit quality dynamics, this is an im-

portant input to bank stress testing. The recent crisis has increased interest among

regulators and financial institutions in the use of risk management approaches that rely

more on the evaluation and study of stress scenarios or stress tests of different kinds.

(See, for example, Borio, Drehmann, and Tsatsaronis (2014) and Acharya, Engle, and

Pierret (2014).) One may think of stress testing as risk analysis of portfolio outcomes

conditional on particular adverse scenarios. As such, stress testing is a natural comple-

ment to more traditional risk measurement (such as the calculation of Value at Risk

(VaR) or Expected Shortfall (ES)) which is generally performed on an unconditional

basis.

Conditional modeling of ratings dynamics are also central to the modeling efforts

in which many banks are engaged to meet the requirements of the IFRS 9 accounting

standard. Under this standard, banks must forecast their expected losses conditional on

the current state of the macroeconomic cycle. This requires the development of coher-
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ent approaches to Point-in-Time (PIT) and Through-the-Cycle (TTC) ratings (bank’s

internal ratings frameworks are TTC whereas IFRS 9 requires a PIT viewpoint) and

then rigorous approaches for estimating future expected losses.

In this paper, we study correlations or dependency between ratings changes for bor-

rowers from different sectors. We do this both unconditionally and conditional on shocks

to macro economic variables. Our approach therefore suggests ways of benchmarking or

parameterizing standard unconditional VaR or ES analysis while also showing how one

may perform macroeconomic stress tests, both within a single unified framework.

A variety of techniques for estimating ratings change distributions have been pro-

posed in the literature. Most studies have focused on default correlations (i.e., binary

default/no-default events) but the techniques proposed are equally applicable to trino-

mial events (up-grade/down-grade/no change in rating), or to fully multinomial events

(such as ratings changes). In particular, Gordy (2000) proposes a method to calibration

asset correlation by matching the moment of conditional default probability. Servigny

and Renault (2002a) estimate correlations from default data using a moment-based es-

timator. They estimate the correlation between default and non-default events within

given time periods and then transform this into the correlation between Gaussian latent

variables. Frey and McNeil (2003) perform moment-based and Maximum Likelihood

estimations of default correlations. McNeil and Wendin (2006) and McNeil and Wendin

(2007) estimate correlations from default and ratings transitions using Bayesian tech-

niques.

Other authors who have analyzed the correlations implicit in credit default data in-

clude Chernih, Vanduffel, and Henrard (2006), Chernih, Vanduffel, and Henrard (2006),

Das, Freed, Geng, and Kapadia (2006), Dulmann and Scheule (2003), Frey, McNeil, and

Nyfeler (2001), Gagliardini and Gourieroux (2005a) and Gagliardini (2005b), Gordy

and Heitfield (2002), Kijima, Komoribayashi, and Suzuki (2002), Koopman, Lucas, and

Klaassen (2005), Lamb and Perraudin (2008), Lopez (2004), Pitts (2004) and Schwaab,

Koopman, and Lucas (2017).

In this paper, we use historical data on Moody’s ratings to estimate correlations for

latent variables driving credit ratings both within and between sectors. We suppose that

ratings changes (intrinsically discrete phenomena) are driven by continuously distributed

latent variables. These latent variables are presumed to be correlated and Gaussian. In
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performing our estimations, we allow for the fact that the latent variables driving the

ratings are not directly observed. We extend the above (unconditional) framework by

supposing that the common sector factors driving ratings changes have an observable

component that we identify with innovations in GDP. We then repeat our ML estimations

but conditional on historically observed GDP shocks.

The fact that our analysis supplies conditional distributions of the evolution of port-

folio credit risk implies that our approach may be used in stress testing. Stress testing

conditional on macroeconomic scenarios, commonly termed macro stress testing, has

become an important component of the battery of stress tests that bank regulators now

require of the institutions they supervise. Macro stress testing has also been performed

by regulators as part of the system-wide stress tests that they themselves have imple-

mented, post the crisis, to assess systemic risk in different countries’ banking markets.

Berkowitz (1999), Kupiec (1998), Lopez (2005) and Schachter (2001) discuss how

stress testing may be used in ways that complement and are more or less integrated with

VaR analysis. CGFS (2001), CGFS (2005) and CGFS (2000) present survey information

and best practice guidelines on stress testing in financial firms. Blaschke, Jones, Majnoni,

and Peria (2001) and Elsinger, Lehar, and Summer (2005) discuss how stress testing

may be used to assess the stability of banking systems as a whole. Building on Pesaran,

Schuermann, and Weiner (2004), Pesaran, Schuermann, Treutler, and Weiner (2006)

present techniques for implementing macro stress testing for a banking portfolio.

The paper is organized as follows. Section 2 presents the modeling approach. Section

3 presents estimation results. Section 4 shows simulations of the model. Section 5 con-

cludes. Numeric integration and statistic inference techniques employed in this research

are described in the Appendix.

2 The Model for Credit Rating Correlation

2.1 A Latent Variable Model

In this section, we present the approach of two-step maximum likelihood estimations

for credit correlation embedded in ratings data. The credit correlations within a sector
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are initially estimated, then the credit correlation between each pair of sectors are ob-

tained in the second estimation. We also extend this two-step approach to conditional

analysis in which macro stress testing can be conducted.

Here we present a multivariate, latent variable model of credit rating migrations. The

framework is based on assumptions similar to those employed in rating-based portfolio

credit risk models (see, for example, Gupton, Finger, and Bhatia (1997)). In brief, the

approach supposes that for each obligor in a given period a standard Gaussian random

(latent) variable is drawn and that the change in the obligor’s rating is determined by the

interval of the real line in which the latent variable realization falls. Furthermore, this

latent variable is a linear combination of a systematic risk factor and an idiosyncratic risk

factor. Exposures are correlated since they share systematic risk factor. So dependency

between ratings changes for different obligors is introduced by supposing that the latent

variables are joint Gaussian. Li (2000) shows that the Credit Metric factor model is

essentially a Gaussian Copula model.

More formally, consider a portfolio consisting of n = 1, 2, .., N obligors from i =

1, 2, .., K industries. Let rn,t denote the rating at time t of the nth obligor. Let I(n)

denote the nth obligor’s industry which we assume to be constant over time. Suppose

there are J ratings categories (including the default state) and that rn,t takes values in

the set of integers: {1, 2, · · · , J}.1

Suppose that changes in the rating of the nth obligor are driven by a latent variable

xn,t =
√
ρnfI(n),t +

√
1− ρnεn,t, (2.1)

where

fI(n),t ≡ is the industry factor for obligor n realized at date t

ρn ≡ is a constant industry factor loading of the nth obligor

εn,t ≡ is the nth obligor′s idiosyncratic shock at time t . (2.2)

Suppose that both fI(n) and εn,t are independent standard normal variables. It follows

that the latent variable xn,t is also standard normal.

1Moody’s credit ratings are based on 8 coarse ratings categories (Aaa, Aa, A, Baa, Ba, B, Caa, and

default) and 18 fine ratings categories (Aaa, Aa1, Aa2, Aa3, A1,A2, A3, Baa1, Baa2, Baa3, Ba1, Ba2,

Ba3, B1, B2, B3, Caa, and default). In this paper, we work with the coarse rating categories ranging

from AAA which is rating 8 to the default which we denote as rating category 1.
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Given these assumptions, the obligors in a given industry have a single common risk

factor. For two industries, i and j, the corresponding factors, fi,t and fj,t, are assumed

to have a correlation coefficient denoted ρi,j.

In addition to industry classification, this model allows us to group obligors into

homogenous buckets such as according to geographic region or initial rating. An other

advantage, as mentioned in Gordy and Heitfield (2002), is that we only need to keep track

of one risk factor per bucket. So we can think of industry factor fI(n) as a summarizing

effect on obligors in this industry. So ρn is the sensitivity of obligors to the industry-

specific common risk factor.

Suppose that the rating at date t of obligor n is determined by its rating in the prior

period and the realization of the latent variable xn,t. For each initial, non-default rating

category, i = 2, 3, . . . , J , z
(n)
i,k for k = 1, 2, . . . , J − 1, denote a set of J − 1 cutoff points.

If rn−1 = i, then, let: 
rn = 1, if xn < z

(n)
i,1 ;

rn = j, if z
(n)
i,j−1 < xn < z

(n)
i,j ;

rn = J, if xn > z
(n)
i,J−1.

.

Assuming the value of these cutoff points and that latent variables are distributed as

standard normal random variables, the probabilities of rating migrations are:

Pr [rn = 1] = Φ(z
(n)
i,1 ),

Pr [rn = j] = Φ(z
(n)
i,j )− Φ(z

(n)
i,j−1), (2.3)

Pr [rn = J ] = 1− Φ(z
(n)
i,J−1).

Here, Φ(.) is the standard normal probability distribution function.

The expressions in equation (2.3) are unconditional transition probabilities. Condi-

tional on the industry factor fI(n), and initial rating i, one may show that the probabil-
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ities of one-step-ahead ratings are:

Pr
[
rn = 1|fI(n)

]
= Φ

(
z
(n)
i,1 −

√
ρnfI(n)√

1− ρn

)
,

Pr
[
rn = j|fI(n)

]
= Φ

(
z
(n)
i,j −

√
ρnfI(n)√

1− ρI(n)

)
− Φ

(
z
(n)
i,j−1 −

√
ρnfI(n)√

1− ρn

)
, (2.4)

Pr
[
rn = J |fI(n)

]
= 1− Φ

(
z
(n)
i,J−1 −

√
ρnfI(n)√

1− ρn

)
.

The statistical model we employ here contains Random Effects resulting from com-

mon risk factor fI(n). If the common factor were observable, then the model would

reduce to the Ordered Probit Model with the link function being the standard normal

distribution function. This type of model belongs to a larger class called Generalized

Linear Mixed Model (GLMM) as pointed out by (Frey and McNeil (2003)). The advan-

tage of using GLMM is that it can handle continuous covariate as well as polytomous

variables such as credit ratings. Greene (2011) provides a good introduction to this

subject.

In what follows, we shall assume that the ratings of all individual obligors within

a sector have identical distributions. In particular, we suppose a constant ρn for any

exposure, n, within a given sector, k, and that the transition probabilities are also

identical for exposures in a sector. With a slight abuse of notation, we may write the

factor loading for the nth exposure in the kth sector as ρk where k = I(n). Similarly,

the cutoff points may be written as z
(k)
i,j for exposures within the kth sector.

An appealing feature of the above model is that correlation is implicitly built into the

structure of the latent variables in (2.1). Both the inter and intra industry correlations

can be derived from it. For example, the correlation between the latent variables for

two obligors from sector k is ρk, while the correlation between the latent variables of

obligors from sectors i and k is
√
ρiρkρi,k, where ρi,k is the inter-sector correlation between

industry factors fi and fk.

In general, if ρ is a diagonal matrix of intra sector correlations, and ρf is a ma-

trix of inter sector correlations, then the unconditional latent variable (at obligor level)

correlation matrix is

Σ =
√
ρ′ρf
√
ρ (2.5)
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We now turn to how one may estimate the intra industry and inter industry correlations

by Maximum Likelihood Estimation (MLE).

2.2 Maximum Likelihood Estimation for Correlation

There exist different approaches in the credit risk literature to estimating credit

correlation based on ratings data. It is common to employ moment-based estimation

approaches as in Servigny and Renault (2002b). However, empirical studies suggest

these approaches leads to downward biased correlation estimates (see Gordy and Heit-

field (2002) and Gagliardini and Gourieroux (2005a)). Maximum Likelihood Estimation

may have better small sample properties. However, there are technical challenges in

calculating the likelihood function because one must integrate over the common factor.

In some cases, the integration is of high dimension. McNeil and Wendin (2007) pro-

pose Bayesian techniques (including the Gibbs Sampler) which avoids the problems of

high dimensional integration and permits the use of priors. Here, we propose a simpler

Maximum Likelihood approach involving multi-step estimations.

We assume though out that time is discrete with a time step equal to one year. To

estimate intra- and inter-industry correlation matrix, two Maximum Likelihood Esti-

mations may be performed. In such a two-step approach, the results of the first set of

estimations yield inputs to the second set of estimations.

Let N
(k)
ij (t) denote the number obligors in industry k rated i at date t which migrate

to j one year later. The data on ratings migrations in a given period and for a given

industry may be arranged into a (J − 1)× J count matrix,

N (k)(t) =
[
N

(k)
ij (t)

]
.

If all rating changes were independent, the likelihood for the count data would consist

of the product of a set of probabilities of moving from one rating to another where these

probabilities would be taken powers equal to the number of obligors observed to make

transitions between particular pairs of ratings. However, in the model described above,

rating changes are correlated through the correlation of the latent variables which drive

them since these latent variables contain a common risk factor. The rating changes

are, therefore, only independent if one conditions on the common factor. Calculating
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the likelihood then involves forming the product of probabilities taken to the relevant

powers conditional on the common factor and then integrating over this factor.

Rather than using all possible ratings changes, we simplify the problem by restricting

attention to observations of (i) upgrades, (ii) downgrades and (iii) observations in which

ratings do not change. Major rating agencies such as Moody’s and Standard & Poor’s

monitor and publish information on historical defaults as well as upgrade and downgrade

rates. Hamilton and Cantor (2004) argues that downgrades and upgrades are taken

seriously by banks in pricing credit instruments and thus affect credit spreads.

We denote the number of ratings upgrades, no changes and downgrades for obligors

in sector k in period t with initial rating i as:

N
(k)
iU (t) =

J∑
j=i+1

N
(k)
ij (t),

N
(k)
iN (t) = N

(k)
ii (t),

N
(k)
iD (t) =

i−1∑
j=1

N
(k)
ij (t).

The corresponding conditional probabilities of upgrade, no change and downgrade are:

P
(k)
iU (t) = 1− Φ

(
Z

(k)
i,i −

√
ρkfk√

1− ρk

)
,

P
(k)
iN (t) = Φ

(
Z

(k)
i,i −

√
ρkfk√

1− ρk

)
− Φ

(
Z

(k)
i,i−1 −

√
ρkfk√

1− ρk

)
, (2.6)

P
(k)
iD (t) = Φ

(
Z

(k)
i,i−1 −

√
ρkfk√

1− ρk

)
.

Here, z
(k)
i,j is the jth cutoff point of sector k for the rating migration from initial rating

i to terminal rating j. And time index for fi is omitted for simplicity.

For industry k and initial rating i, the conditional probability of observing all rating

9



migrations in year t are independent. Hence, the joint likelihood is

J∏
i=2

[
N

(k)
iU (t) +N

(k)
iN (t) +N

(k)
iD (t)

]
!

N
(k)
iU (t)!×N (k)

iN (t)!×N (k)
iD (t)!

[
P

(k)
iU (t)N

(k)
iU (t)P

(k)
iN (t)N

(k)
iN (t)P

(k)
iD (t)N

(k)
iD (t)

]
=

J∏
i=2

A
(k)
i (t)L

(k)
i (fk, t; ρk).

Here,

A
(k)
i (t) =

[
N

(k)
iU (t) +N

(k)
iN (t) +N

(k)
iD (t)

]
!

N
(k)
iU (t)!×N (k)

iN (t)!×N (k)
iD (t)!

,

and L
(k)
j (fk, t; ρk) represents the product of upgrade, no-change and downgrade proba-

bilities. To calculate the unconditional probability, one must integrate over the common

factor, fk.

Suppose for sector k, a series of rating migration count matrices, N (k)(t), are observed

for periods t = 1, . . . , T . The unconditional log likelihood of all rating migrations may

be written as:

Lk(ρk) =
T∑
t=1

log

∫
R

J∏
i=2

A
(k)
i (t)L

(k)
i (fk, t; ρk) dΦ(fk)

∝
T∑
t=1

log

∫
R

J∏
i=2

L
(k)
i (fk, t; ρk) dΦ(fk). (2.7)

Here, the constant terms A
(k)
i are omitted since they play no role in estimation and Φ(.)

is the standard normal cumulative distribution function.

The above likelihood function is similar to what have been presented in Gordy and

Heitfield (2002) and Frey and McNeil (2003). But in their work they only consider binary

default/non-default events. Here, we employ a multinomial probit mixture model.

For a pair of sectors k = 1, 2, conditional on factors f1 and f2, the probability of

observing all rating migrations in both industries is

2∏
k=1

J∏
i=2

A
(k)
i (t)L

(k)
i (fk, t; ρk).

To calculate the unconditional probabilities for rating migrations in both industries, one

must integrate over both factors f1 and f2.
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Suppose for sector k = 1, 2, two series of rating migration count matrices N (1)(t)

and N (2)(t) are observable for years t = 1, . . . , T . The unconditional log-likelihood of all

rating migrations in both sectors is:

L12(ρ1, ρ2, ρ12) =
T∑
t=1

log

∫
R

∫
R

2∏
k=1

J∏
i=2

A
(k)
i (t)L

(k)
i (fk, t, ρk) dΦ2 (f1, f2; ρ12)

∝
T∑
t=1

log

∫
R

∫
R

2∏
k=1

J∏
i=2

L
(k)
i (fk, t, ρk) dΦ2 (f1, f2; ρ12) . (2.8)

Here, constant terms A
(k)
i are omitted and Φ2 is the standard bivariate normal cumulative

distribution function with correlation ρ12.

To summarize, when deriving the likelihood function, we use the property of condi-

tional independence so that the joint likelihood is the product of all probabilities, and

then integrate over the common factor(s) to remove the conditioning. For an univariate

industry, conditional on the industry factor fi, rating migrations are independent within

the industry. For a pair of industries, conditional on both industry factors f1 and f2,

rating migrations in both industries are independent.

Again, for simplicity, we estimate the parameters sequentially. Initially, we estimate

intra-industry correlations for each industry by using likelihood function (2.7), i.e., es-

timate ρk, ∀k = 1, · · · , I. Then, for any pair of industries, given the intra industry

correlations estimated in the first MLE, we use likelihood function (2.8) to estimate the

inter-industry correlation. This two-step approach has the major advantage that each

Maximum Likelihood Estimation (MLE) only requires that one maximize the likelihood

over a single scalar parameter for intra-industry correlations and over two dimensions

for inter-industry correlations.

If we estimated the parameters for all the sectors together, the aggregated likeli-

hood function would be similar to that employed in McNeil and Wendin (2006). The

requirement of integrating over multiple dimensions would make Maximum Likelihood

scarcely feasible in that case, however. Including autocorrelation as McNeil and Wendin

(2006) would further exacerbate the problem. McNeil and Wendin (2006) and McNeil

and Wendin (2007) circumvent these difficulties by using Bayesian techniques. Our se-

quential estimation approach makes Maximum Likelihood feasible in a multi-industry

setting, reducing the integration to at most two dimensions. Specifically, we employ
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Gauss Hermite Quadrature as described in Burden and Faires (2010). Appendix pro-

vides details.

2.3 Conditional Latent Variable Model

In the unconditional model described above, the latent variable is described by equa-

tion (2.1) in which the common factor for sector k at time t is denoted fk,t. Now,

suppose that fk,t is a weighted sum of an economy-wide common factor, ft, and an

industry-specific shock, gk,t, i.e.,

fk,t =
√
βkft +

√
1− βk gk,t. (2.9)

Here, ft and gk,t are independent, standard, normally-distributed random variables sat-

isfying E(gigj) = ρ
(g)
ij , and βk is a constant factor loading. The inter-industry factor

correlation (the correlation between fi and fj) may be expressed in matrix notation as:√
β′β +

√
(1− β)′(1− β) · ρ(g). (2.10)

Here, · denotes element-by-element multiplication, β is a column vector made up of

elements βi, ρ
(g) is the correlation matrix of g, and 1 is a column vector of ones with

the same dimensions as β.

The inclusion of an observable common factor ft introduces what in statistical lan-

guage is referred to as fixed effects. The observed variable introduces a time varying

effect from overall economic conditions, influencing obligors in different sectors. Nickell,

Perraudin, and Varotto (2000), Bangia, Diebold, Kronimus, Schagen, and Schuermann

(2002), Hu, Kiesel, and Perraudin (2002) and Wei (2003) and many others have found

evidence that rating migrations are influenced by observable macroeconomic variables.

Hence, rating migrations do not conform to a time-homogenous Markov Chain. Unfor-

tunately, observed variables are unable to explain all the dynamics in rating migrations,

so the unobservable common factor gk,t (specific to a sector) should be retained in the

model.

Since the economy-wide factor, ft, is observable, one may again employ the approach

described above for the unconditional model to derive likelihood functions for estimating

both intra- and inter-industry correlations. We denote this specification with the asso-

ciated likelihoods as the conditional model, reflecting the fact that the economy-wide
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factor, ft, is treated as given. The log likelihood functions in the intra- and inter-industry

cases, see equations (2.7) and (2.8), are almost unchanged except that

(i) the conditional probability, becomes

P̃
(k)
iU (t) = 1− Φ

(
Z

(k)
i,i −

√
ρkβkf −

√
ρk(1− βk)gk√

1− ρk

)
,

P̃
(k)
iN (t) = Φ

(
Z

(k)
i,i −

√
ρkβkf −

√
ρk(1− βk)gk√

1− ρk

)
(2.11)

−Φ

(
Z

(k)
i,i−1 −

√
ρkβkf −

√
ρk(1− βk)gk√

1− ρk

)
,

P̃
(k)
iD (t) = Φ

(
Z

(k)
i,i−1 −

√
ρkβkf −

√
ρk(1− βk)gk√

1− ρk

)
.

Here, the time index for factors gk and f is omitted for simplicity.

(ii) In the unconditional model, it is necessary to calculate the likelihood function

conditional on the common factor, fk. However, in the conditional model, fk may

be split into the observable component ft and the unobservable industry shock gk.

So, in this case, one must calculate the likelihood function conditional on gk.

To summarize, the intra-industry conditional log-likelihood for all rating migrations for

sector k is:

Lk(ρk, βk) ∝
T∑
t=1

log

∫
R

J∏
i=2

L
(k)
i (gk, t; ρk, βk)dΦ(gk). (2.12)

Here,

L
(k)
i (gk, t; ρk, βk) = P̃

(k)
iU (t)N

(k)
iU (t)P̃

(k)
iN (t)N

(k)
iN (t)P̃

(k)
iD (t)N

(k)
iD (t).

Similarly the inter-industry conditional log-likelihood for all rating migrations for two

industries denoted k = 1, 2 is:

L12(ρ
(g)
12 , ρ1, ρ2, β1, β2) ∝ (2.13)

T∑
t=1

log

∫
R

∫
R

2∏
k=1

J∏
j=2

L
(k)
i (gk, t; ρk, βk)dΦ

(
g1, g2; ρ

(g)
12

)
.
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Again, we shall estimate these parameters sequentially. In particular, there are three

consecutive Maximum Likelihood estimations. First, we estimate the intra-industry

correlations ρk using likelihood function (2.7) in unconditional model. Next given in-

tra industry correlation obtained in the first maximum likelihood estimation, estimate

economy wide factor loading βk using likelihood function (2.12). And finally given the

results in the first and the second maximum likelihood estimation, estimate correlation

for inter sector shock ρ
(g)
ij using likelihood function (2.13). The advantage of this 3-step

estimation is similar to that of in the unconditional model. That is in each estimation

only one parameter is iterated and the joint distribution is consistent with its breakdown

margins.

3 Results

3.1 Data

To implement the model, we use Moody’s issuer ratings data for US-domiciled issuers

from the start of 1990 to mid 2010. We combine the Moody’s industry classification

with the North American Industry Classification System (NAICS) to divide the data

into 15 sectors. See Moody’s (2010) and NAIC (2007) for detailed information on their

respective industry classifications. The sectors we employ and associated acronyms are

listed below.

1. Oil and Gas: OG.

2. Mining: Coal and Metal: Mn.

3. Real Estate: RE.

4. Information: Inf.

5. Transportation: Trp.

6. Heavy Engineering and Technology: HET.

7. Consumer Goods: CG

8. Medical and Pharmaceutical: Md.

9. Banking: Bk.
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10. General Manufacturing: GM.

11. Public Administration: PA.

12. Telecom: Tel.

13. Utility: Ut.

14. Agriculture: Ag.

15. Business Service: BS.

Table 1 provides data on the number of observations available for each sector year by

year. One may observe that Banking and Heavy Engineering and Technology are the

two sectors for which most data is available, accounting for more than a half of the total

observations. Relatively few observations are available for other sectors. Among them,

Agriculture has the fewest observations.

Data frequencies by initial rating at the start and end of the sample period are

shown in Figure 1. The un-shaded bar represents ratings observations in 1991 while the

black bar stands for ratings observations available for 2010. In 1991, the distribution is

centered on BBB or A. Among them, Banking and Telecom observations tend to have

the highest credit ratings whereas Transportation obligors have the lowest credit ratings.

The number of rated obligors has increased substantially over the sample period. The

Banking sector still has the largest number of observations in high quality ratings. But

the credit quality of Telecom obligors has somewhat deteriorated.

The estimation of correlation parameters we perform is based on ratings up-grades,

down-grades and observations for which ratings are unchanged. So, it makes sense to

inspect these three types of data directly as well as using them in the estimation routines.

Figure 2 plots the difference between up- and down-grades for all sectors across all

sample periods. If an industry’s time series is more volatile and exhibits large fluctua-

tions, then one would expect this industry to be highly correlated in the sense that the

intra-industry correlation parameter will be large in magnitude. In other words, if corre-

lation is high, the chances of observing more up grades than down grades (or vice versa)

in particular periods is high. From the figure, one may observe that Heavy Engineer-

ing & Technology, Consumer Goods and Utility have lower intra-industry correlation,

whereas Mining, Media and Transportation have higher intra industry correlation.
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It is common in credit market research to use rank correlation of up- and down-grade

ratings movements to measure the co-dependence of ratings changes across industries.

For example Akhavein, Kocagil, and Neugebauer (2005) infer asset correlation from

Kendall’s Tau by observed rating upward, downward and no-movement. Table 2 cal-

culates Kendall’s Tau for the up-grade minus down-grade series. The table shows that

Utility and Medical have lower intra-sector correlation with other industries. In the

case of Utility, many are actually negative. Heavy Engineering, Technology, and Busi-

ness Service, on the other hand, tend to have higher intra-sector correlations than other

sectors.

3.2 Estimation for Unconditional Model

The sequential estimation approach we adopt implies that need only optimize likeli-

hood functions over a single dimension. In particular, we initially estimate intra-industry

correlation, ρi, sector by sector, maximizing the log likelihood of upgrades, downgrades

and no-movements. This likelihood is shown in equation (2.7). After estimating the

intra-industry correlations, we estimate inter-industry correlations, ρik, for each pair of

industries. If there are N industries, this implies there are N(N−1)
2

inter-industry corre-

lation parameters to estimate. We maximize the likelihood shown in equation (2.8).

Intra-industry correlations based on 20 years of historical data for US-domiciled cor-

porate ratings are shown in Table 3. In this table, one may see that the results are

broadly consistent with the data depicted in Figure 2. Those industries with volatile

up-down series tend to possess higher intra-industry correlations. Clearly, correlation

estimates vary across different sectors, the range of magnitude being from 5% to 20%.

In the Basel II document of BCBS (2005), asset correlations for sovereigns, banks and

corporate are in principle to take value between 12% to 24%. Our results show correla-

tions slightly lower than the Basel values. In this our study resembles other empirical

studies, see Frey and McNeil (2003), Akhavein, Kocagil, and Neugebauer (2005) and

McNeil and Wendin (2006). In other words, the Basel II correlation values are more

conservative than those suggested by historical data. Hansen, Vuuren, and Ramadurai

(2008) argues that this conservatism is appropriate given the global scope of Basel II and

the need to accommodate, for example, differences across banks in risk factor sensitivity,
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concentration risk and model risk.

The industries that exhibit low correlations are Consumer Goods, Utility and Heavy

Engineering & Technology. Mining, Real Estate and Transportation have the highest

intra-industry correlations. Standard errors are presented in parentheses in Table 32.

The results on inter-industry correlation estimations, ρf , are shown in Table 4. We

will discuss the inter-industry correlation matrix in the next section when we provide

estimation results for the conditional model.

3.3 Estimation for Conditional Model

In the conditional model, the log likelihood function (see equation (2.12) ) may be

maximized over ρi and βi using data on the observed economy-wide factor and the

ratings changes for the industry. One may either estimate ρi and βi simultaneously or

employ estimates ρi from unconditional model using equation (2.7) and then substitute

these into the conditional model. The results obtained from the two methods turn out

to be very similar. A similar approach may be applied to estimating the pairwise inter-

industry estimation. Having estimated the intra-industry parameters, ρ and β may be

substituted into equation(2.13) to estimate ρ(g).

The observable macroeconomic factor we employ consists of innovations to GDP

as measured by deviations from trend based on the Hodrick-Prescott filter, For more

information, see Hodrick and Prescott (1997) and Leser (1961). This filter consists of

a technique of deducing a trend in a macroeconomic time series. See the Appendix for

details. Deviations from the trend may be regarded as innovations. In the conditional

model, these innovations are assumed to equal the economy wide factor f(t). This factor,

by assumption, must have unit variance and a zero mean. So we normalize the process

accordingly. see Figure 3 for extracted GDP innovations. We perform a Ljung-Box Q-

test for serial correlation. The results, contained in Table 12, show that one cannot reject

at a 1% significance level the null hypothesis that the process is serially uncorrelated.

The parameter estimates for β and its standard errors are presented in Table 3. The

2Standard errors are calculated by the delta method. This involves numerical discretization of the

Hessian of the likelihood. Central difference are used except when the estimates are close to zero, in

which case we employ one-sided differences.
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parameter βi is the sensitivity of the risk factor driving latent variable in the ith sector to

the business cycle as measured by the Hodrick-Prescott-filtered GDP series. Most values

are positive apart from Medical, General Manufacturing and Public Administration

which are close to zero. Given the sign conventions of the model, positive parameters

imply, as one would intuitively expect, that increases in GDP are associated with credit

rating upgrades. The degree of cyclical sensitivity evident for the different sectors is

reasonably convincing. Information, and Business Service have the highest beta values,

while Real Estate, Transportation and Agriculture have moderately high beta values.

The Medical, Utility, Public Administration and Manufacturing sectors have low betas

with values less that 20%. Of them, 3 have betas close to zero. Thus, more that half of

the sectors have high sensitivity to GDP shocks.

The inter-industry correlation matrix is presented in Table 4. For its associated

positive-definite matrix, see Table 5. One can use this correlation matrix to calcu-

late the (obligor-level) latent variable correlation matrix by using equation (2.5). The

obligor-level correlations across different sectors are substantially lower than the intra-

sector correlations, as one might expect. By using S&P’s ratings data, McNeil and

Wendin (2006) estimate 8.7% of intra-industry correlations on average and 2.6% for

inter-industry correlations. Our results show the average of inter-industry correlations

is around 4%, with the highest value being 16%. The correlations estimated by Hansen,

Vuuren, and Ramadurai (2008) using Fitch ratings data around 3%-4% with the highest

value being around 10.6%.

From these tables, one may see that Utility, Public Administrations and Medical have

low correlations with other sectors, while the Business Services, Agriculture, Mining, and

Heavy Engineering and Technology sectors tend to have high correlations with other

sectors. Other sectors are correlated to a moderately high degree. These findings are

consistent with the estimation results already reported for βk.

One may compare the MLE estimates with the rank correlation results shown in

Table 2. The rank correlations show that Utility and Medical have low correlations

with other sectors, whereas Heavy Engineering and Technology, Business Services have

higher correlations with other sectors. These results are broadly consistent with the

MLE estimation results.

Conditional on the common cyclical factor, the inter-industry correlation matrix ρg
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is presented in Table 6. The associated positive-definite matrix is reported in Table 7.

See the Appendix for a discussion of how the correlation matrices are transformed to

ensure positive definiteness. The pattern of correlation across different sectors is little

affected by enforcing such positive definiteness.

It is interesting to compare the conditional inter-industry correlation matrix ρ(g) with

the unconditional inter-industry correlation matrix in Table 4. Of the entries in the

matrices, 77% of the scalar conditional correlations are smaller than their unconditional

counterparts.

The implied inter-industry correlation matrix, ρf , calculated from equation (2.10), is

presented in Table 8. Comparing this table with the estimated inter-industry correlation

matrix in Table 4, one may note that the two inter-industry correlation matrices are

broadly similar, which testifies to the consistency of the conditional and unconditional

approaches.

4 Simulation Tests

4.1 Reverse Test

This section consists of two parts. In the first, we evaluate our estimation techniques

using Monte Carlo analysis. Specifically, we generate data for hypothesized, multi-

sector portfolios with predetermined initial ratings. Given the parameters for both

intra- and inter-sector correlations, we simulate ratings changes in the portfolio. Finally

we estimate the correlation parameters using the simulated data. In the second part of

the section, we conduct stress testing analysis on the hypothesized portfolio. We then

calculate the distribution of the portfolio value conditional on the worst GDP shock that

occurs within our sample period.

The aforementioned models involve intensive numerical calculations. For example,

to evaluate the likelihood function numerically requires integration techniques using

Hermite Gauss Quadrature. It is helpful, therefore, to evaluate the performance of

the algorithms we employ. To this effect, we simulate ratings yearly time series for two

industries. In constructing the simulated dataset, we suppose there are 20×7 companies
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with 1/7th allocated to each of the rating categories from AAA to CCC. We then use

the simulated data to estimate both intra- and inter-industry correlations.

To test the correlation model, two cases are examined. In the first case, we test the

general performance of the model with low and high intra-sector correlations and short

and long sample periods. In particular, the following correlation values are employed:

ρ1 = 0.05 and ρ1 = 0.3 with sample periods of 30 years, 60 years and 100 years. Estimates

of intra-industry correlations for these different cases are provided in Table 10.

From Table 10, one can observe that the means of the estimated correlation are very

close to the true values in all cases. As the sample size grows, the standard deviation

of the mean estimates declines. The model produces more accurate results when the

correlation is low, but when correlation is at a high level, the approach tends slightly to

underestimate the true value. Similar results were found by Gordy and Heitfield (2002)

in their simulation analyses. This bias may reflect bias in the Maximum Likelihood

estimation approach or numerical issues associated with the limited precision a computer

can achieve. Specifically, in this model, when the common factor is very large, the

conditional probabilities employed within the likelihood are very small. The problem

may be alleviated by (i) scaling the probability, (ii) and using more points in the Hermite

Gauss Quadrature.

We then perform a second simulation exercise with a single intra-industry correlation

value of 10% and 10,000 replications. The results are shown as a histogram in Figure 4.

The the mean of the estimates is equal to 10.03% which is very close to its true value.

For inter-industry correlation we test the model by high, median and low correlation,

in particular ρ = 0.1, 0.5, 0.8. In this case, we perform 1,000 simulations with 30 and 60

years of simulated data. Table 11 presents results suggesting the model is able to handle

large inter-correlation well. With small a sample size of 30 years of data, inter-industry

correlation values are negatively biased when the true value is small. When the sample

size is increased to 60 years, the bias is reduced substantially.

In general, we believe the above analyzes demonstrate the robustness of the approach

and the correctness of the implementation.
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4.2 Stress Test

Basel II requires that bank perform stress testing to assess the sensitivity of their

portfolios to extreme market conditions. Some stress testing involves formulating sce-

narios expressed directly in terms of macroeconomic scenarios (see BCBS (2005)). One

may observe from historical data that during periods of low macroeconomic activity,

defaults tend to cluster. So when performing stress testing, some may propose to boost

correlation so as to differentiate normal market conditions. The problem is that we do

not know to what degree we should boost correlation for stress testing purposes. A more

formal approach such as one based on our conditional model then seems appealing.

In our conditional framework, different sectors with different level of correlations

respond to the stressed conditioning variable in to differing degrees. As an example, we

formulate here stress testing for two portfolios each comprising 100 bonds in a single

sector. The two sectors on which we focus are: Real Estate and Utility. The bonds

are evenly distributed across the coarse, non-default ratings categories. Each bon has

a face value of 100 and a maturity of two years. Using the parameters estimated in

previous sections, we perform two simulation exercises each with 10,000 replications. In

the first exercise, we compute the distribution of the value of each portfolios using the

unconditional model. Next, conditional on the worst historical GDP shock in Figure 3

(which equals a shock of to -2.56%), we recompute the value of both portfolios using

conditional model.

The upper row in Figure 5 plots the unconditional density of the simulated value for

both portfolios as a histogram. The intra-sector correlations are 15.2% for Real Estate

and 6.65% for Utility. As shown in the figure, the unconditional means of the portfolios

are similar, reflecting the fact that the exposures in the two portfolios have the same

ratings, par-values and maturities. In particular, the mean value for both Real Estate

and Utility is 918. However, since the intra-sector correlation for Real Estate is much

higher than Utility, the distribution of Real Estate is more spread out with a a longer

left-hand tail. The one percent quantile for the Real Estate portfolio distribution is 748

which is significantly lower than the value of 811 for Utility.

The bottom row in Figure 5 conditional densities for the simulated values of both

portfolios in the form of histograms. The factor loading parameter β represents the
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sensitivity to general economic conditions. For exposures in Real Estimate, the estimated

beta coefficient is equal to 54.76%, whereas for Utility it is equal to 17.79%. Conditional

on the worst case historic GDP shock, we can see that both distributions shift to the

left. For Utility, the conditional mean falls to 879, a reduction of 39 compared to the

unconditional mean of 918. The one percent quantile falls to 755, a reduction of 56 from

811 . For Real Estate, the conditional mean value of portfolio falls to 793, a drop of 125,

while the one percent quantile declines to 602, a reduction of 146 from 748. In response

to the worst GDP shock in the sample period, Real Estate shows a deeper drop in value

and expansion in the left tail. This shift shift is also clearly apparent in Figure 6.

In general the stress test results show that a portfolio of Utility bonds may perform

reasonably even during extreme macroeconomic condition (reflecting the fact that its

intra-sector correlation and beta coefficients are low). In contrast, a portfolio of Real

Estate bonds is likely to perform poorly in macroeconomic downturns reflecting the fact

that the correlation and macroeconomic sensitivity parameters are relatively high.

5 Conclusion

Quantities such as default probability, recovery rates and correlation play decisive

roles in both credit pricing and risk management by banks in the context either of their

banking or trading books. In contrast to other parameters, correlations in credit risk

analysis are harder to measure and, even if measurable, notoriously unstable.

This paper attempts to capture credit correlations using Moody’s rating data from

1990 to 2010. We estimate both intra- and inter-industry correlations using Maximum

Likelihood estimations with numeric integration. The analysis is implemented both

unconditionally and conditionally. The conditional approach permits one to implement

macro stress testing in which the credit quality of a portfolio is simulated conditional

on a hypothesized future path of real GDP innovations.

The main results of the analysis are as follows.

1. Intra- and inter-industry correlations vary systematically across industry sectors.

For example, intra-industry correlations range from about 5% to 21% in the un-

conditional model. Similar results are found in the conditional model, with beta
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coefficients for GDP innovations varying across sectors. These results suggest the

importance of distinguishing between sectors in credit risk modeling and capital

management.

2. Conditional on the macroeconomic factor we investigate, GDP innovations, most

correlations between sectors tend to decrease. This suggests the majority of sectors

exhibit a cyclical pattern, with ratings moving on average with the broad economic

cycle.

3. However, the conditional analysis also reflects differing sensitivities across different

sector. We illustrate this by showing that a portfolio of non-cyclical industries

such as Utility exposures is much less sensitive to adverse GDP shocks than a

comparable portfolio of Real Estate bonds.

This paper makes several contributions to the current literature. First, most empirical

analysis of correlation has focussed on on default correlation rather than ratings transi-

tions. Here, we implement a multinomial approach applied to ratings changes including

defaults. Second, we develop a conditional version of our empirical analysis and show

how this can be applied in macro stress testing. Third, Maximum Likelihood appears

to be difficult in higher dimensional, multi-sector cases. Other studies have proposed

simulation-based Maximum Likelihood methods or Bayesian techniques. Here, we show

the effectiveness of multi-step Maximum Likelihood estimation, which as we demonstrate

is tractable and transparent and yields comprehensible and intuitive estimates.

Appendix

A1 Numeric Integration

When computing likelihood functions in the context of intra-industry correlation

estimation, one must evaluate a one-dimensional integral with respect to the common

factor. When estimating inter-industry correlation by Maximum Likelihood, one must

calculate a double integral with respect to two correlated common factors. In performing

integrations, we employ Gauss Hermite Quadrature. Here, we explain how we apply the

Gauss Hermite Quadrature approach to bivariate cases.
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Integrating a function, g(x), with respect to a standard normal density is straight-

forward in that one evaluates: ∫
R

g(x)f(x) =
n∑
i=1

wixi.

Here, f(x) is the density function of the standard normal variate and wi and xi are

determined from Gauss Hermite Quadrature. The more points used, the higher degree

of accuracy is achieved but at the cost of more computation.

Now, consider a two-dimensional integral with respect to two correlated standard

normal variables. Suppose X and Y are two standard normal random variables with

joint density function, f(x, y), and linear correlation coefficient: ρ. We want to compute

the following integral

I(x, y) =

∫
R

∫
R

g(x, y)f(x, y)dx dy.

Rather than deriving new two-dimensional Gauss Quadrature with a given correlation

parameter, one may orthogonalize X and Y and then perform the one-dimensional

integration twice. To achive this, one may use the conditional density function fx(y)

such that f(x, y) = f(x)fx(y) and

I(x, y) =

∫
R

f(x)

(∫
R

g(x, y)fx(y)dy

)
dx.

To derive the conditional density function, fx(y), one may perform the projection

x = z1

y =
√
ρz1 +

√
1− ρz2.

This implies that

Y |x ∼ N (
√
ρx, 1− ρ) ,

fx(y) =
1√

2π(1− ρ)
exp

(
−

(y −√ρx)2

2(1− ρ)

)
.

A change of variable yields:

ỹ =
y −√ρx
√

1− ρ
, dỹ =

1√
1− ρ

dy.
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Thus, the inner integral of I may be expressed as∫
R

g
(
x,
√
ρx+

√
1− ρỹ

)
f(ỹ)dỹ

=
n∑
i=1

g
(
x,
√
ρx+

√
1− ρxi

)
wi.

Substituting yields:

I(x, y) =

∫
R

f(x)
n∑
i=1

g
(
x,
√
ρx+

√
1− ρxi

)
wi dx

=
n∑
i=1

wi

∫
R

f(x)g
(
x,
√
ρx+

√
1− ρxi

)
dx

=
n∑
i=1

wi

n∑
j=1

g
(
xj,
√
ρxj +

√
1− ρxi

)
wj.

A2 Wald Inference

To perform statistic inference, sampling distributions for parameter estimates are

needed. Wald inference is the most commonly used method. This employs a quadratic

approximation to the log-likelihood to derive an estimate of the asymptotic covariance

matrix of the parameters.

Suppose b is the estimator of β. The variance-covariance matrix for b is

E
[
(b− β)(b− β)T

]
= H−1E(UUT )H−1,

where

U =
∂L

∂β
Score− function

H =
∂U

∂β
Hessian.

The asymptotic distribution for the estimator is

b ∼ N
(
β,H−1E(UUT )H

)
.

Assuming the model is correctly specified, limp(H) = limp(UU
T ) and, thus:

b ∼ N
(
β,H−1

)
.
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To compute the Score and the Hessian matrix, we use finite difference approxima-

tions. In particular, we employ central differences which have a higher order of accuracy

than one-sided differences. The Score and Hessian are evaluated at b assuming an

incremental change in β of δ.

∂L

∂β
|β=b =

L(b+ δ)− L(b− δ)
2δ

∂2L

∂β2
|β=b =

L(b+ δ)− 2L(b) + L(b− δ)
δ2

.

A3 Estimating Transition Matrix: Cohort Approach

In computing the probability of rating transitions, we assume that the cutoff points

are given in that they are implied by a particular industry transition matrix. This

latter is estimated from historic rating transitions using the cohort approach under

which particular transition probabilities are assumed to equal the corresponding historic

transition frequencies. Though widely employed in past studies, the cohort approach

does not make full use of the available data. The estimates are not affected by the timing

and sequencing of transitions within a year. In consequence, transition probabilities to

low quality ratings are often zero when the initial rating is high quality.

A cohort comprises all obligors holding a given rating at the start of a given period.

the transition matrix is calculated with empirical transition frequencies as follows. Let

N(i, t) denote the number of obligors in rating i at the beginning period of t, and let

N(i, j, t) denote the number of obligors from cohort (i, t) that have migrated to rating

j at the end of period t. The transition frequencies in period t is computed as

p̂(i, j, t) =
N(i, j, t)

N(i, t)
.

If one has several periods of data, it is usual to use as estimate of the transition

probability is average over yearly transition frequencies weighted by the fraction of ob-

servations in each year.

p̂(i, j) =

∑
tN(i, t)p̂(i, j, t)∑

tN(i, t)
=

∑
tN(i, t)N(i,j,t)

N(i,t)∑
tN(i, t)

=

∑
tN(i, j, t)∑
tN(i, t)

=
N(i, j)

N(i)
.
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Equivalently, the obligor weighted average may be directly obtained by dividing the

overall sum of transitions from i to j by the overall number of obligors that were in

rating i at the start of any of the periods considered.

A4 The Hodrick-Prescott Filter

The Hodrick-Prescott(HP) filter is a popular mathematical tool to separate a time

series into growth and cyclical components. Suppose that the original time series is yt

and can be decomposed into a growth component gt and a cyclical component ct, i.e.,

yt = gt + ct.

Given a smoothing parameter λ, the HP filter minimizes the following objective

function
T∑
t=1

c2t + λ
T−1∑
t=2

[(gt+1 − gt)− (gt − gt−1)]2 .

The conceptual basis for this objective function is that the first sum minimizes the

difference between the data and its growth component (which is the cyclical component)

and the second sum minimizes the second-order difference of the growth component,

which is analogous to minimization of the second derivative of the growth component.

Note that this filter is equivalent to a cubic spline smoother. When λ = 0, the

growth component becomes equivalent to the original series while λ = ∞, the growth

component approaches a linear trend as the 2nd order derivatives is minimized to zero.

A5 Positive Definite Correlation Matrix

Estimation of covariance (correlation) matrices for risk management purposes may

result (depending on the approach taken) in candidate matrices that are not positive-

definite. This creates problems, for example, when one attempts to use such matrices to

generate correlated random numbers as part of Monte Carlo simulations. It is, therefore,

necessary to transform the non-positive-definite matrices so as to ensure the resulting

matrices are positive definite.
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The approach employed here(described in Perraudin, Polenghi, and Taylor (2002))

consists of fitting the possibly non-positive-definite matrix to a parameterized matrix

which is guaranteed to have the right positive-definiteness property. The fitting is per-

formed by minimizing the sum of squared discrepancies between elements of the param-

eterized matrix and the corresponding elements of the target matrix.

The parameterized matrix is constructed by assuming it consists of a diagonal matrix

of strictly positive elements plus a matrix which is the outer product of a number of

vectors. The matrix is scaled so that its diagonal elements equal unity. This constructed

matrix has the form of a factor structure correlation matrix and, hence, is sure to be

positive-definite. The factor structure also provides a simple way of limiting the number

of parameters to be fitted while maintaining positive definiteness.

To be precise, let E denote a K ×K matrix of estimated correlation coefficients for

a set of risk factors and E∗ denote the parameterized K ×K estimator of E.

Because all the matrices encountered are symmetric and have unit diagonal elements,

one can restrict the attention to elements contained in the lower diagonal part. The

vech(.) operator applied to a matrix yields a lower diagonal part of the matrix (i.e., the

elements below the leading diagonal) in a vectorized form in which columns are stacked

one above the other starting from the left-most column.

One may obtain an estimate E∗ of E by minimizing the following function (termed

a quadratic distance function) over the elements of the vector:

L = (vech(E∗)− vech(E))2 .

Here, E∗ =
∑N

i=1 bib
′
i + Q and Q is a matrix having 1 − b2i,1 − b2i,2 − · · · − b2i,N in the

diagonal element on the ith row, and zeros off the diagonal.

One may minimize the quadratic distance function, L, assuming different numbers

of factors (i.e., different values of N in the above notation). A larger number of factors

implies a larger number of parameters to fit the correlation matrix and, hence, a better

approximation. Having minimized the distance function, one obtains a set of fitted

vectors and a fitted correlation matrix which is positive-definite.

There are different ways in which one can measure the accuracy of the fitted corre-

lation matrices. One approach is to evaluate how rapidly the fitted matrixes stabilize as
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the number of factors employed in the fitting (i.e., N in the above notation) increases.

One may calculate the ratio of the ordered eigenvalues of matrices fitted with smaller

numbers of factors to the ordered eigenvalues of a matrix fitted with a large number of

factors. It may be observed that the ratios settle down rapidly if the fitted matrices are

accurate.

A second possible approach consists of examining the average discrepancy between

the individual correlations in the original matrices and the corresponding individual

correlations in the fitted matrices. Lastly, one may examine the comparisons in average

correlations between the fitted matrices and original matrices to show the accuracy of

the fitted correlation matrices.

Perraudin, Polenghi, and Taylor (2002) demonstrate that, given correlation matrices

with between 20 and 50 dimensions were generally well fitted with four factors. 10 factors

have been used in the approach employed here which is, therefore, likely to provide a

close fit to the original correlation matrix.
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Table 1: Number of observations in rating transition

Sector 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000

Oil and Gas 27 44 62 71 85 102 119 152 164 151

Mining 4 19 29 39 48 59 59 65 78 76

Real Estate 6 8 18 32 46 64 84 108 130 135

Information 16 32 38 50 57 77 95 125 130 137

Transportation 23 34 40 54 58 63 69 81 86 85

Engineering 115 192 280 349 391 429 483 551 637 662

Consumer Goods 17 26 35 46 53 48 49 52 57 51

Medical 13 23 52 71 68 73 84 96 109 105

Banking 155 209 265 340 381 422 477 545 572 588

Manufacturing 34 48 55 71 77 79 82 94 109 116

Administration 4 10 17 20 27 30 39 38 44 39

Telecom 26 45 66 83 104 121 144 163 184 206

Utility 20 32 41 49 55 57 57 57 57 59

Agriculture 0 2 5 7 8 11 9 14 15 18

Services 10 17 20 30 39 40 50 58 72 72

Sector 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Oil and Gas 150 159 156 158 156 159 163 174 170 171

Mining 69 56 42 41 43 44 46 43 44 39

Real Estate 134 123 118 111 120 127 119 115 104 87

Information 134 121 109 109 108 113 113 120 111 81

Transportation 79 74 63 61 61 56 50 51 45 48

Engineering 641 581 521 498 498 489 484 501 473 458

Consumer Goods 46 42 32 34 35 33 30 30 32 31

Medical 95 94 95 91 100 89 95 97 99 104

Banking 573 548 535 537 541 542 554 568 525 494

Manufacturing 102 97 83 88 86 84 83 79 77 74

Administration 35 32 36 37 45 42 39 40 39 41

Telecom 209 174 127 110 105 100 98 99 94 97

Utility 63 62 60 60 62 63 59 59 61 62

Agriculture 12 13 16 16 19 20 20 18 18 16

Services 66 66 62 64 70 69 74 93 90 86
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Table 3: Maximum likelihood estimation for ρk and βk.

Sector ρk βk

Oil and Gas 13.37(3.84) 23.72(20.58)

Mining: Coal and Metal 14.15(5.50) 23.42(29.04)

Real Estate 15.20(3.68) 54.76(19.62)

Information 11.29(2.39) 83.22(11.46)

Transportation 20.95(4.25) 55.82(17.66)

Heavy Engineering and Technology 6.87(0.83) 47.27(15.37)

Consumer Goods 5.12(2.67) 21.85(29.50)

Medical and Pharmaceutical 10.01(4.68) 0.00(– –)

Banking 8.90(0.90) 35.27(9.36)

General Manufacturing 9.54(4.62) 0.67(– –)

Public Administration 13.70(5.27) 0.01(– –)

Telecom 9.03(1.26) 27.21(17.96)

Utility 6.65(4.03) 17.81(33.92)

Agriculture 12.80(7.59) 60.73(36.01)

Business Services 12.30(7.88) 91.80(10.23)

Maximum likelihood estimation for Intra industry correlation ρk and sensitivity to

cyclic component of GDP series βk. Numbers are in percent, standard errors in

brackets. As the table shows, Transportation has the highest intra industry

correlation, and then is Real Estate and Mining; whereas Consumer Goods has the

lowest intra industry correlation, and then is Utility and Heavy Engineering and

Technology. This results is broadly consistent with Figure 2. Which is volatile

up-down grade series corresponds to higher intra industry correlation. For Beta

coefficient, Medical and Pharmaceutical, Public Administration almost have no

sensitivity, the opposite are Information and Business service which are highly affected

by cyclic effects. More that half of the sectors have high sensitivity to GDP shock.

36



T
ab

le
4:

M
ax

im
u
m

li
ke

li
h
o
o
d

es
ti

m
at

io
n

fo
r
ρ

S
ec

to
r

O
G

M
n

R
E

In
f

T
rt

H
E

T
C

G
M

d
B

k
G

M
P

A
T

el
U

t
A

g
B

S

O
il

an
d

G
a
s

1
00

65
69

50
9

70
0

59
33

0
2
6

6
0

0
5
8

M
in

in
g

65
10

0
69

74
77

92
86

0
31

66
0

1
2

0
8
9

7
6

R
ea

l
E

st
at

e
6
9

6
9

10
0

73
19

22
21

27
42

69
15

8
8

3
6

7
2

In
fo

rm
a
ti

on
5
0

7
4

73
10

0
48

82
46

0
58

15
0

47
42

6
6

6
1

T
ra

n
sp

or
t

9
77

19
48

10
0

47
69

48
3

74
0

19
7

9
6

8
8

E
n

g
in

ee
ri

n
g

70
92

22
82

47
10

0
83

0
38

47
0

79
0

7
7

6
3

C
o
n

su
m

er
G

o
o
d

s
0

86
21

46
69

83
10

0
0

17
87

0
5
2

0
1
0
0

8
9

M
ed

ic
al

59
0

27
0

48
0

0
10

0
20

41
21

0
0

0
0

B
a
n

k
in

g
3
3

31
42

58
3

38
17

20
10

0
0

5
1

10
0

0
2
9

M
a
n
u

fa
ct

u
ri

n
g

0
6
6

69
15

74
47

87
41

0
10

0
0

19
0

9
6

9
6

A
d

m
in

is
tr

a
ti

on
26

0
15

0
0

0
0

21
51

0
1
00

0
0

0
0

T
el

ec
om

6
12

8
47

19
79

52
0

10
19

0
10

0
20

4
9

1
9

U
ti

li
ty

0
0

8
42

7
0

0
0

0
0

0
2
0

10
0

0
4

A
gr

ic
u

lt
u

re
0

8
9

36
66

96
77

10
0

0
0

96
0

49
0

1
0
0

1
0
0

S
er

v
ic

e
58

7
6

72
61

88
63

89
0

29
96

0
19

4
1
0
0

1
0
0

In
te

r
in

d
u

st
ry

co
rr

el
a
ti

on
es

ti
m

at
ed

b
y

m
ax

im
u

m
li

k
el

ih
o
o
d

m
et

h
o
d

s.
F

ro
m

th
es

e
re

su
lt

s,
on

e
ca

n
se

e
th

a
t

U
ti

li
ty

,
P

u
b

li
c

A
d

m
in

is
tr

at
io

n
s

a
n

d
M

ed
ic

al
h

av
e

lo
w

co
rr

el
at

io
n

w
it

h
ot

h
er

se
ct

or
s,

w
h

il
e

se
ct

or
s

ar
e

co
rr

el
a
te

d
to

m
o
d

er
a
te

ly
h

ig
h

d
eg

re
e.

T
h

is
ob

se
rv

at
io

n
is

co
n

si
st

en
t

w
it

h
β
k

es
ti

m
at

io
n

,
w

h
er

e
m

os
t

se
ct

or
s

ar
e

h
ig

h
ly

co
rr

el
at

ed
w

it
h

cy
cl

ic
eff

ec
ts

,
a
p

a
rt

fr
om

th
e

af
or

em
en

ti
o
n

ed
th

re
e

lo
w

co
rr

el
at

io
n

se
ct

or
s.

(N
u

m
b

er
s

ar
e

in
p

er
ce

n
t.

)

37



T
ab

le
5:

P
os

it
iv

e
d
efi

n
it

e
ρ

S
ec

to
r

O
G

M
n

R
E

In
f

T
rt

H
E

T
C

G
M

d
B

k
G

M
P

A
T

el
U

t
A

g
B

S

O
il

G
a
s

10
0

5
5

65
52

6
50

18
45

41
10

21
9

2
1
8

3
6

M
in

in
g

55
10

0
63

71
67

82
77

0
30

65
4

2
8

3
8
2

9
1

R
ea

l
E

st
at

e
6
5

6
3

10
0

61
26

38
31

9
40

43
15

5
8

3
9

6
9

In
fo

rm
a
ti

on
5
2

7
1

61
10

0
43

75
48

4
53

32
6

45
36

5
7

6
2

T
ra

n
sp

or
ta

ti
on

6
6
7

26
43

10
0

47
76

29
6

79
2

22
5

8
8

7
6

E
n

g
in

ee
ri

n
g

50
82

38
75

47
10

0
77

1
34

42
2

66
6

7
3

6
7

C
o
n

su
m

er
G

o
o
d

s
1
8

77
31

48
76

77
10

0
9

14
81

0
5
1

0
9
5

8
2

M
ed

ic
al

45
0

9
4

29
1

9
10

0
17

19
2
4

0
0

1
1

2

B
a
n

k
in

g
4
1

30
40

53
6

34
14

17
10

0
6

5
0

13
6

1
2

2
3

M
a
n
u

fa
ct

u
ri

n
g

1
0

6
5

43
32

79
42

81
19

6
10

0
0

17
0

8
7

8
7

A
d

m
in

is
tr

a
ti

on
21

4
15

6
2

2
0

24
50

0
1
00

3
3

1
2

T
el

ec
om

9
28

5
45

22
66

51
0

13
17

3
10

0
18

4
3

2
4

U
ti

li
ty

2
3

8
36

5
6

0
0

6
0

3
1
8

10
0

5
3

A
gr

ic
u

lt
u

re
1
8

82
39

57
88

73
95

11
12

87
1

43
5

1
0
0

9
0

S
er

v
ic

e
36

9
1

69
62

76
67

82
2

23
87

2
24

3
9
0

1
0
0

In
te

r
in

d
u

st
ry

co
rr

el
a
ti

on
m

a
tr

ix
ρ

co
n
ve

rt
ed

in
to

p
os

it
iv

e
d
efi

n
it

e
co

rr
el

at
io

n
m

at
ri

x
so

th
at

ca
n

b
e

u
se

d
in

si
m

u
la

ti
o
n

.

38



T
ab

le
6:

M
ax

im
u
m

li
ke

li
h
o
o
d

es
ti

m
at

io
n

fo
r
ρ
(g
)

co
n
d
it

io
n
al

on
U

S
G

D
P

S
ec

to
r

O
G

M
n

R
E

In
f

T
rt

H
E

T
C

G
M

d
B

k
G

M
P

A
T

el
U

t
A

g
B

S

O
il

an
d

G
a
s

1
00

56
47

44
0

38
0

64
45

0
2
8

1
7

9
0

0

M
in

in
g

56
10

0
9

56
77

82
87

2
36

49
0

3
0

0
1
0
0

7
5

R
ea

l
E

st
at

e
4
7

9
10

0
32

1
0

0
68

26
48

20
0

2
0

8
1

In
fo

rm
a
ti

on
4
4

5
6

32
10

0
40

53
52

11
29

2
0

52
63

5
1

0

T
ra

n
sp

or
ta

ti
on

0
7
7

1
40

10
0

34
68

37
0

76
0

19
0

1
0
0

8
4

E
n

g
in

ee
ri

n
g

38
82

0
53

34
10

0
81

1
20

46
0

7
1

0
6
0

1
4

C
o
n

su
m

er
G

o
o
d

s
0

87
0

52
68

81
10

0
0

25
90

0
47

0
1
0
0

1
0
0

M
ed

ic
al

64
2

68
11

37
1

0
10

0
33

0
14

11
2

6
5
1

B
a
n

k
in

g
4
5

36
26

29
0

20
25

33
10

0
0

5
3

4
0

0
0

M
a
n
u

fa
ct

u
ri

n
g

0
4
9

48
2

76
46

90
0

0
10

0
0

6
0

1
0
0

1
0
0

A
d

m
in

is
tr

a
ti

on
28

0
20

0
0

0
0

14
53

0
1
00

0
0

0
0

T
el

ec
om

1
7

3
0

0
52

19
71

47
11

4
6

0
1
00

4
3
1

0

U
ti

li
ty

9
0

2
63

0
0

0
2

0
0

0
4

1
00

0
0

A
gr

ic
u

lt
u

re
0

1
00

0
51

10
0

60
10

0
6

0
10

0
0

31
0

1
0
0

1
0
0

S
er

v
ic

e
0

75
81

0
84

14
10

0
51

0
10

0
0

0
0

1
0
0

1
0
0

In
te

r
in

d
u

st
ry

co
rr

el
a
ti

on
ρ
(g
)

co
n

d
it

io
n

al
on

cy
cl

ic
co

m
p

on
en

t
of

U
S

G
D

P
se

ri
es

.
T

h
e

w
ay

in
w

h
ic

h
d
iff

er
en

t
se

ct
o
rs

co
rr

el
a
te

d
to

ea
ch

ot
h

er
d
o
es

n
’t

sh
ow

b
ig

d
iff

er
en

ce
to

th
at

of
u

n
co

n
d

it
io

n
al

in
te

r
in

d
u

st
ry

co
rr

el
a
ti

o
n

co
rr

el
a
ti

o
n

.
H

ow
ev

er
,

on
av

er
a
ge

th
e

m
ag

n
it

u
d

e
ar

e
re

d
u

ce
d

fr
om

co
n

d
it

io
n
in

g
on

G
D

P
se

ri
es

in
n

ov
at

io
n

.

39



T
ab

le
7:

P
os

it
iv

e
d
efi

n
it

e
ρ
(g
)

S
ec

to
r

O
G

M
n

R
E

In
f

T
rt

H
E

T
C

G
M

d
B

k
G

M
P

A
T

el
U

t
A

g
B

S

O
il

an
d

G
a
s

1
00

35
45

44
2

39
10

57
48

0
2
6

1
7

8
7

1

M
in

in
g

35
10

0
1

56
72

76
86

0
29

62
5

3
3

5
8
7

5
4

R
ea

l
E

st
at

e
4
5

1
10

0
16

15
1

10
67

22
42

20
6

1
1

1
4

5
1

In
fo

rm
a
ti

on
4
4

5
6

16
10

0
34

53
42

8
29

11
2

50
54

4
0

8

T
ra

n
sp

or
ta

ti
on

2
7
2

15
34

10
0

37
76

24
3

70
0

17
6

9
1

8
0

E
n

g
in

ee
ri

n
g

39
76

1
53

37
10

0
74

7
23

43
0

7
2

3
6
1

2
8

C
o
n

su
m

er
G

o
o
d

s
1
0

86
10

42
76

74
10

0
3

15
84

0
4
1

4
9
5

7
5

M
ed

ic
al

57
0

67
8

24
7

3
10

0
30

18
15

6
2

1
0

3
7

B
a
n

k
in

g
4
8

29
22

29
3

23
15

30
10

0
2

5
3

8
2

9
0

M
a
n
u

fa
ct

u
ri

n
g

0
6
2

42
11

70
43

84
18

2
10

0
2

13
0

8
6

9
5

A
d

m
in

is
tr

a
ti

on
26

5
20

2
0

0
0

15
53

2
1
00

2
1

0
2

T
el

ec
om

1
7

3
3

6
50

17
72

41
6

8
13

2
1
00

7
2
9

7

U
ti

li
ty

8
5

11
54

6
3

4
2

2
0

1
7

1
00

5
0

A
gr

ic
u

lt
u

re
7

8
7

14
40

91
61

95
10

9
86

0
29

5
1
0
0

8
3

S
er

v
ic

e
1

54
51

8
80

28
75

37
0

95
2

7
0

8
3

1
0
0

In
te

r
in

d
u

st
ry

co
rr

el
a
ti

on
m

a
tr

ix
ρ
(g
)

co
n
ve

rt
ed

in
to

p
os

it
iv

e
d

efi
n
it

e
co

rr
el

at
io

n
m

at
ri

x
so

th
at

ca
n

b
e

u
se

d
in

si
m

u
la

ti
o
n

.

40



T
ab

le
8:

U
n
co

n
d
it

io
n
al
ρ

im
p
li
ed

fr
om

co
n
d
it

io
n
al

m
o
d
el

.

S
ec

to
r

O
G

M
n

R
E

In
f

T
rt

H
E

T
C

G
M

d
B

k
G

M
P

A
T

el
U

t
A

g
B

S

O
il

an
d

G
a
s

1
00

60
50

42
20

44
12

61
51

2
2
7

2
7

19
2
1

2
6

M
in

in
g

60
10

0
35

57
76

79
89

2
50

48
0

4
3

17
8
8

5
8

R
ea

l
E

st
at

e
5
0

3
5

10
0

76
55

57
35

46
58

38
14

3
7

32
5
8

8
6

In
fo

rm
a
ti

on
4
2

5
7

76
10

0
79

84
62

5
64

8
1

64
62

8
4

8
7

T
ra

n
sp

or
ta

ti
on

2
0

76
55

79
10

0
71

75
25

44
57

1
48

3
1

1
0
0

8
7

E
n

g
in

ee
ri

n
g

44
79

57
84

71
10

0
82

1
56

36
1

78
3
2

8
4

7
6

C
o
n

su
m

er
G

o
o
d

s
1
2

89
35

62
75

82
10

0
0

46
83

0
6
0

20
9
2

7
0

M
ed

ic
al

61
2

46
5

25
1

0
10

0
27

0
1
4

1
0

2
5

1
5

B
a
n

k
in

g
5
1

50
58

64
44

56
46

27
10

0
5

4
3

33
2
5

4
6

5
7

M
a
n
u

fa
ct

u
ri

n
g

2
4
8

38
8

57
36

83
0

5
10

0
0

9
3

6
9

3
6

A
d

m
in

is
tr

a
ti

on
27

0
14

1
1

1
0

14
43

0
1
00

0
0

1
1

T
el

ec
om

2
7

4
3

37
64

48
78

60
10

33
9

0
10

0
25

5
6

4
8

U
ti

li
ty

19
1
7

32
62

31
32

20
2

25
3

0
2
5

10
0

3
3

4
0

A
gr

ic
u

lt
u

re
2
1

88
58

84
10

0
84

92
5

46
69

1
56

3
3

1
0
0

9
3

S
er

v
ic

e
26

5
8

86
87

87
76

70
15

57
36

1
4
8

40
9
3

1
0
0

U
n

co
n

d
it

io
n

a
l

in
te

r
in

d
u

st
ry

co
rr

el
a
ti

on
im

p
li

ed
fr

om
co

n
d

it
io

n
al

co
rr

el
at

io
n

m
at

ri
x

an
d

in
tr

a
in

d
u

st
ry

co
rr

el
a
ti

o
n

b
y

eq
u

a
ti

on
2
.1

0
.

T
h

is
co

rr
el

a
ti

on
m

a
tr

ix
is

cl
os

e
to

th
at

es
ti

m
at

ed
fr

om
M

ax
im

u
m

L
ik

el
ih

o
o
d

E
st

im
at

io
n

,
im

p
li

es
th

e

co
n

d
it

io
n

a
l

a
n

d
u

n
co

n
d

it
io

n
al

m
o
d

el
ar

e
co

n
si

st
en

t
to

ea
ch

ot
h

er
.

41



T
ab

le
9:

P
os

it
iv

e
d
efi

n
it

e
u
n
co

n
d
it

io
n
al
ρ
.

S
ec

to
r

O
G

M
n

R
E

In
f

T
rt

H
E

T
C

G
M

d
B

k
G

M
P

A
T

el
U

t
A

g
B

S

O
il

an
d

G
a
s

1
00

48
47

39
26

41
18

57
52

4
2
6

2
7

18
2
5

2
8

M
in

in
g

48
10

0
39

59
74

80
83

10
50

50
2

46
1
9

8
1

5
8

R
ea

l
E

st
at

e
4
7

3
9

10
0

70
59

56
40

44
57

28
13

3
6

33
5
8

8
2

In
fo

rm
a
ti

on
3
9

5
9

70
10

0
75

84
59

13
63

20
3

64
61

7
8

8
9

T
ra

n
sp

or
ta

ti
on

2
6

74
59

75
10

0
71

78
15

44
55

0
49

3
1

9
4

8
6

E
n

g
in

ee
ri

n
g

41
80

56
84

71
10

0
81

6
56

36
2

77
3
3

8
4

7
6

C
o
n

su
m

er
G

o
o
d

s
1
8

83
40

59
78

81
10

0
1

41
73

0
5
4

18
9
2

6
8

M
ed

ic
al

57
1
0

44
13

15
6

1
10

0
25

1
15

7
3

7
1
6

B
a
n

k
in

g
5
2

50
57

63
44

56
41

25
10

0
11

42
3
4

25
4
7

5
7

M
a
n
u

fa
ct

u
ri

n
g

4
5
0

28
20

55
36

73
1

11
10

0
1

1
5

3
6
3

4
2

A
d

m
in

is
tr

a
ti

on
26

2
13

3
0

2
0

15
42

1
1
00

0
1

0
2

T
el

ec
om

2
7

4
6

36
64

49
77

54
7

34
15

0
10

0
25

5
4

5
0

U
ti

li
ty

18
1
9

33
61

31
33

18
3

25
3

1
2
5

10
0

3
2

4
1

A
gr

ic
u

lt
u

re
2
5

81
58

78
94

84
92

7
47

63
0

5
4

32
1
0
0

8
8

S
er

v
ic

e
28

5
8

82
89

86
76

68
16

57
42

2
5
0

41
8
8

1
0
0

In
te

r-
in

d
u

st
ry

co
rr

el
a
ti

on
im

p
li

ed
fr

o
m

co
n

d
it

io
n

al
co

rr
el

at
io

n
m

at
ri

x
an

d
in

tr
a

in
d
u

st
ry

co
rr

el
at

io
n

,
b

u
t

co
n
v
er

te
d

in
to

p
os

it
iv

e
d

efi
n

it
e

so
th

at
ca

n
b

e
u

se
d

in
si

m
u
la

ti
on

.

42



Table 10: ρk estimated from simulated data.

Sample Size
ρ = 0.05 ρ = 0.3

Est Std Est Std

30 0.0499 0.0168 0.2933 0.0287

60 0.0502 0.0111 0.2914 0.0208

90 0.0502 0.0085 0.2924 0.0158

Estimation of intra industry correlation by simulated rating transitions, with 20

Hermite Gauss quadrature points and 1000 simulations. From this table one can see

that the mean of the estimated correlation is very close to its true value for all cases.

As sample size grows the standard deviation of the mean estimates declines. But when

correlation is high, the model tends to underestimate the true value due to numerical

issues.

Table 11: ρij estimated from simulated data.

Sample Size
ρ = 0.1 ρ = 0.5 ρ = 0.8

Est Std Est Std Est Std

30 0.1487 0.1606 0.5036 0.1560 0.8039 0.0922

60 0.1272 0.1169 0.4950 0.1820 0.8041 0.0647

Bi-variate inter industry correlation estimated from simulated rating transitions. 1000

simulation, 20 Hermite Gauss quadrature points. The results indicate that the model

is able to handle large inter industry correlation estimation very well. For low

correlation value it is negatively biased because of numeric problem. Inspecting the

data it turns out some of the estimators are zero value. But with 60 years sample size

this bias is reduced substantially.
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Table 12: Hodrick and Prescott Ljung-Box Q-test.

Lag 1 2 3 4 5 6 7 8 9 10

ACF 0.21 -0.25 -0.31 -0.27 0.09 0.06 0.01 0.05 -0.16 -0.07

Q-stat 1.75 4.31 8.46 11.68 12.03 12.20 12.20 12.31 13.67 13.91

P Value 0.19 0.12 0.04 0.02 0.03 0.06 0.09 0.14 0.13 0.18

Crital Value 6.63 9.21 11.34 13.28 15.09 16.81 18.48 20.09 21.67 23.21

HO 0 0 0 0 0 0 0 0 0 0

With the cyclical components extracted from US GDP series from 1971-2009,

autocorrelations for lags 1 to 10, and then perform a Ljung-Box Q-test to assess serial

correlation. If HO equals to zero means null hypothesis that the data has no serial

correlation at corresponding lag is accepted. Otherwise HO equals to 1 indicates

rejection of the null hypothesis. At significance level α = 1%, null hypothesis for all

lags are accepted which implies the GDP innovation series is effectively independent.
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