
 
 

Research Paper 
 
 
 
 
 

The Dependence of Recovery Rates and 

Defaults 

 
 
 
 
 
 
 
 
 
Date:2006 
Reference Number:6/1 
 
 

 



 1

 

The Dependence of Recovery Rates and 
Defaults 

 
Yen-Ting Hu* and William Perraudin** 

 

This version: February 2006 

 

 
 

Abstract 

In standard ratings-based models for analysing credit portfolios and pricing credit 

derivatives, it is assumed that defaults and recoveries are statistically independent. 

This paper presents evidence that aggregate quarterly default rates and recovery 

rates are, in fact, negatively correlated. Using Extreme Value Theory techniques, we 

show that the dependence affects the tail behaviour of total credit loss distributions 

and leads to higher VaR measures. 
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1 Introduction 

In the standard ratings-based credit risk model developed by Gupton, Finger and 

Bhatia (1997), it is assumed that recoveries on defaulted exposures are random 

outcomes, independent of default events. A similar independence assumption is 

made in the pricing models of Jarrow, Lando and Turnbull (1997) and Kijima and 

Komoribayashi (1998). While the assumption is a sensible starting point for analysis, 

it might be seen as questionable.  

This paper uses Moody’s data for January 1971 to January 2000 to investigate the 

dependence between quarterly, aggregate recovery and default rates. Recovery rates 

are defined as the ratio of the market value of the bonds to the unpaid principal, one 

month after default, averaged across the bonds that default in a given quarter. 

Default rates are defined as the fraction of bonds that default in a quarter to the 

number of bonds rated at the start of the quarter. 

Our study is complicated by the fact that the pool of bond issues rated by Moody’s 

changes over time. For example, utilities made up over 50% of Moody’s-rated firms 

in the early 1970s but this percentage had fallen to less than 10% by 1999. Since 

different industries have very different recovery rates, changes in the industry 

breakdown of the rated pool may generate apparent volatility in recovery rates in 

time series samples. Since this volatility is unlikely to be related to aggregate 

defaults, it will make aggregate default and recovery rates appear less correlated 

than they actually are. 

To cope with the time-variation in the sample of recoveries, as the first stage of our 

analysis, we “standardise” the recovery data. We achieve this by estimating a 

statistical model of recovery rates in which issue-characteristics including industry 

and seniority appear as regressors. Using the model, we are then able to calculate 

what the recoveries would have been for each obligor in the sample if that obligor 

had possessed certain standard characteristics. The characteristics of our reference 

issue type are those of a senior unsecured, US-industrial issue with no backing by 

another organisation.  
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The statistical model we employ to standardise the recoveries data has some 

independent interest. There is a substantial empirical literature on bond and loan 

recoveries (see Hickman (1958), Fons (1994), Asarnow and Edwards (1995), Carty 

and Lieberman (1996), and Altman and Kishore (1996) amongst others). But, all the 

published studies have limited themselves to comparisons of mean recovery rates for 

different defaulted issues with different characteristics. This has the drawback that 

the marginal impact of particular characteristics cannot be determined. In contrast, 

in this study, we perform multivariate regressions so the effect of changing one 

variable while holding others constant is apparent.  

Given our estimates of standardised aggregate recovery rates and default rates, we 

study their dependence by calculating correlations between quarterly recovery rates 

and default rates for issues by US-domiciled obligors, over different time periods. 

We conclude that typical correlations for post 1982 quarters are –22%. If the period 

1971-2000 is considered, typical correlations are -19%. 

However, what often matters for credit risk measures and capital is not correlation, 

but the degree of dependence between extreme realisations of default rates and 

recovery rates. To study this dependence, we examine the total credit losses faced by 

an investor who, in each quarter, holds equal dollar amounts in each of the bonds 

rated by Moody’s. We define total credit losses as the default rate in the quarter 

times one minus the average recovery rate in the quarter. This corresponds to a 

default-mode notion of credit losses, as losses associated with declines in credit 

standing short of default do not contribute to this measure of losses. 

We employ non-parametric techniques to estimate the density and the tail of the 

distribution of total credit losses. We do this for actual losses and for loss data in 

which we have artificially eliminated any dependence by randomly selecting default 

rate-recovery rate pairs to form a simulated total loss rate. We then compare the 

distribution of losses with and without dependence, focussing in particular on Value 

at Risk (VaRs) statistics. 

The techniques we employ for estimating total loss VaRs are drawn from the recent 

Extreme Value Theory literature on tail estimation with small samples. This is 
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appropriate as we have between 71 and 84 quarterly observations depending on 

which sub-sample we employ.  The approach we take follows that of Huisman, 

Koedijk, Kool and Palm (2001) who suggest a regression technique for estimating 

tail indices of distributions in small samples. Kiesel, Perraudin and Taylor (2001a) 

present an extension and apply these techniques to emerging market benchmark 

bond returns. 

The structure of the paper is as follows. Section 2 describes the data and provides 

statistics on recovery rates. Section 3 described our technique for standardising 

recoveries and presents regression results on how recovery rates vary for defaults on 

bonds with different characteristics. Section 4 reports correlation measures for 

recovery and default rates. Section 5 uses non-parametric techniques to estimate the 

distribution of total credit losses with and without dependence between recovery 

rates and default rates. Section 6 concludes. 

2 Background information on the recoveries data 

2.1 Data description 

The data we employ are the “Moody’s Corporate Bond Default Database” provided 

by Moody’s Credit Risk Management Services. This database contains the credit 

experience and characters of all Moody’s-rated, long-term bond defaults from 

financial institutions, industrials, transportations, utilities and sovereigns. Moody’s 

define the recovery rate on a defaulted bond issue as the ratio of market value of the 

defaulted bond to unpaid principal one month after the default date.1 Default is 

defined as the occurrence of one of the following events: a) missing or delaying 

interest and/or principal, b) filing for bankruptcy or legal receivership and c) there is 

a distressed exchange where the exchange package is apparently helping the 

borrower avoid default. 

The dataset contains default data in the period between 1 January 1970 and 5 

January 2000. However, in 1970, there were total 48 defaulted issues, 42 of which 
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defaulted on the same date, 21 June 1970. Due to the fact that the total number of 

Moody’s rated bonds at the time are relative small, around 2000 issues, these highly 

concentrated default events accounted for more than 2% of the total number of rated 

bonds. To avoid possible miss-representative of the 1970 data, we decide to 

concentrate our analysis on the data between 1 January 1971 and 5 January 2000. 

Having dropped the data in 1970, the dataset then contain 1422 observations in total. 

However for many of these, at least one of the variables we wished to use in our 

analysis is missing. The variable that is missing most often is the recovery rate itself 

(311 missing observations), presumably reflecting the fact that, it may be difficult to 

obtain observations of market values of defaulted bonds. Perhaps surprisingly, a 

fairly large fraction of missing observations occur towards the end of the sample 

period, although there are missing observations throughout the three decades. Once 

we have removed all observations containing missing values, the number of 

recovery rate observations that remains is 958. 

Moody’s classify issuers into 11 broad categories: transportation (72 observations), 

industrial (728), insurance (12), banking (25), public utility (57), finance (11), thrifts 

(20), securities (2), real estate (8), other non-bank (15), and sovereign (8). Since we 

intend to use industry dummies as regressors and some categories contained too few 

observations to be usable, we aggregate further into transportation (72), industrial 

(728), public utility (57), banking and thrifts (45), others (48) and sovereign (8). 

Similarly, Moody’s classify issues by seniority into the categories: senior secured 

(105), senior unsecured (327), senior subordinated (78), subordinated (437), and 

junior subordinated (11). We aggregate the junior subordinated and subordinated 

categories in order to obtain enough observations. 

Finally, Moody’s supply a country code for the domicile of each bond’s issuer. We 

aggregate these to obtain broad geographical categories: US (910), emerging 

markets countries (22), non-US OECD (23) and off shore banking centres (3). 

                                                                                                                                          
1 This definition might be questioned as entitlement in default settlements is generally based on 
unpaid principal plus accrued interest. However, the implied bias is unlikely to be substantial. 
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Greece and Mexico are treated as emerging market countries rather than being 

included as non-US OECD. 

2.2 Recovery distributions 

The empirical distribution of recoveries for all 958 observations in our sample is 

shown in Figure 1. The empirical distribution appear approximately regular, by 

which we mean roughly unimodal and somewhat but not grossly skewed. This is in 

contrast to the highly skewed and bimodal empirical bank loan recovery 

distributions shown in Asarnow and Edwards (1995). The difference reflects the fact 

that the latter is based on discounted cash recoveries rather than bond prices just 

after default. 

Table 1 shows mean recovery rates in percent estimated from our data and those 

reported by past studies. The average recovery rates we obtain are similar to those 

found in the literature, especially to those obtained by Carty and Lieberman (1996) 

whose bond dataset has much overlap with the one employed here.  

Table 2 shows the means and volatilities (standard deviations) of recovery rates for 

different industry and geographic categories.  As past studies have found, our 

recovery data is highly sensitive to the industry of the issuer. Utilities have a mean 

recovery rate of 70% while for bank and thrift issuers, the recovery rates are 23% 

and 26% respectively. The domicile of the bond issuer affects the mean recovery 

rate less, however. The volatilities of recovery rates do not bear any very obvious 

relation to the level of the means. 

3 Extracting Standardised Recoveries 

3.1 Recovery rate regressions 

As explained in the Introduction, analysing the dependence of recovery and default 

rates is complicated by the fact that the pool of obligors rated by Moody’s has 

evolved over time. The fractions of non-US domiciled issuers and banks in the 

Moody’s rated pool have grown from 5% and 0.7% to 59% and 45% from 1971 to 
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1999. At the same time, the fraction of utilities has fallen from 61% to 7%. Since 

recovery rates depend on the characteristics of the bond issue, these changes have 

led to a significant evolution in average recovery rates that in a time series will 

appear to be additional volatility. Since this volatility is likely to be uncorrelated 

with changes in default rates, it will bias down estimates of correlation between 

recovery and default rates. 

To overcome this difficulty, before examining the dependence between default rates 

and recovery rates, we filter the recoveries data by estimating “standardized” 

recovery rates for a particular type of bond issue. To accomplish this, we estimate a 

statistical model of recoveries in which characteristics of the bond issue and of the 

issuer appear as conditioning variables or regressors. Formally, we suppose that 

recoveries on the ith default, iR , may be expressed as a regression on an N-vector of 

variables iX . 

 iii XR εβ +=  (3.1) 

Here, β  is an N-vector of parameters to be estimated and iε  is an error term with a 

mean of zero conditional on iX . 

Using this model, we can calculate what recovery rate the defaulted issue would 

have if it were the recovery on a defaulted issue of a given reference type. 

Specifically, if β̂  is the estimated parameter vector and iε̂ is the fitted residual, then 

*
iR is the standardized residual for the ith observation, where:  

 ii XR εβ ))
+= **  (3.2) 

and *X is the vector of characteristics of the reference issue type. 

The variables we include in the iX vector include:  

1. Industry dummies for the categories: (i) transport, (ii) public utility, (iii) 

banking and thrifts, (iv) sovereigns, (v) others non-industrials. The category 

omitted so as to obtain identification is that of industrials. 

2. Domicile dummies for the categories: (i) emerging markets, (ii) non-US 

OECD, (iii) off-shore banking center. The omitted category is US domicile. 
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3. Seniority dummies for the categories: (i) senior secured, (ii) senior 

subordinated, (iii) subordinated and junior subordinated. The omitted 

category is senior unsecured. 

4. A dummy reflecting whether the issuer has support from some other 

organization. 

All the dummy variables are demeaned so instead of equaling either one or zero, 

they equal one or zero minus the fraction of observations for which the original 

dummy was unity.  

Our reference bond issue is a senior unsecured bond issued by a US-domiciled 

industrial with no support by another entity. The entries in the reference vector of 

regressors, *X , are chosen accordingly. 

3.2 Regression results 

The results of our OLS filter regressions appear in columns 1 and 3 in Table 3. 

Results are provided for the entire data set and for the observations corresponding to 

US-domiciled obligors.  

Since the dummy variables are demeaned, the constant equals the unconditional 

mean recovery rate. The constant for all obligors and for the US data are both 0.41. 

The domicile of the issuer plays a significant role in that recovery rates for non-US 

OECD issuers are 13% lower than in the US while the standard error is 4%.  

The sector of the issuer is clearly important in that public utilities have an average 

recovery rate 22% higher than the reference type (of industrials) while banking and 

thrifts have an average recovery rate 15% lower. One might note that these 

differences have the same signs but are lower than the corresponding differences of 

30% and 15-18% shown in Table 2. This illustrates the benefits of employing a 

multivariate regression that reveals the effects of particular variables while holding 

other factors constant. 
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Seniority and backing dummies all have parameter with intuitively reasonable signs 

and magnitudes. Again, the differences between the seniority effects appearing in 

Table 3 are smaller than those in Table 1. 

3.3 Inverse Gaussian regressions 

A complication not so far mentioned is the fact that recovery rates generally lie 

between zero and unity. (All are positive while a very few observations in the 

dataset (5) exceed unity.) However, the fitted recovery rates *
iR will not necessarily 

satisfy this constraint. The solution we adopt is to transform the recovery rates using 

a function that maps the unit interval to the real line, run the regressions, form fitted 

values and invert the function. A convenient function to use is the inverse of the 

standard Gaussian distribution function. 

Columns 2 and 4 of Table 3 show the parameter estimates for the inverse Gaussian 

recovery rate regressions. The parameter estimates have the same signs as the OLS 

coefficients and the magnitudes of the standard errors as a ratio to the parameter 

values are comparable to those of the OLS model suggesting they are estimated with 

a similar degree of statistical precision. However, the parameter space is different 

for the inverse Gaussian regressions so one cannot immediately interpret the 

regression coefficients in terms of percentage recovery rates as one can with the 

OLS regressions. 

To provide reassurance that the inverse Gaussian transformation does not change the 

estimated impact of regressors on recovery rates despite the change of parameter 

space, in Table 4, we show fitted recovery rates for specific issue types. These are 

calculated by (a) setting iε to zero, (b) calculating the β̂'X  for a vector of 

regressors corresponding to a reference type, and (c) varying individual regressors 

one by one, holding the others constant. As may be seen, the fitted recovery rates are 

very similar to those obtained using the OLS approach. The advantage of following 

this approach is that the fitted recovery rates for any iε are always in the unit interval. 



 10

4 Default and Recovery Rate Correlation 

4.1 Default and recovery rates 

Having filtered the recoveries data as described above, we calculate average 

recovery rates for each quarter in the period 1971 Q1 to 1999 Q4 for US data only. 

We also calculate default rates for each of these quarters by taking the number of 

bonds rated by Moody’s at the start of the quarter that defaulted before the end of 

the quarter and dividing this by the total number of bonds rated by Moody’s at the 

start of the quarter. Any bonds that are withdrawn during the quarter are left out of 

both numerator and denominator.2 From Table 3 we can see that the regression 

results are dominated with the US data. Furthermore, it would be beneficial to focus 

only on the US data because the different economic cycle in different countries 

might contribute to extra volatility of the recovery and default rates. 

Figure 2 shows time series plots of quarterly average filtered recoveries and default 

rates over our sample period. There is clear evidence of negative correlations 

between the two series, especially after 1982. Figures 3 and 4 show scatter plots of 

the filtered quarterly average recoveries for the periods 1971 Q1-1999 Q4 and 1982 

Q1-1999 Q4 respectively. The outlier in the former plot is the 1971 Q2, in which 

many defaults occurred. Both scatter plots suggest negative correlation. 

However, an additional feature of the data that is apparent from the scatter plots is 

the fact that if one considers only observations for which the default rate exceeds 

some amount like 5 or 7.5 basis points, the negative dependence appear to be 

intensified. This is interesting because observations with large default rates are 

likely to be those that contribute to the tail of the total credit loss distribution and 

hence matter for VaR calculations and the determination of appropriate capital. 

                                                 
2 This is the correct procedure under the assumption that ratings withdrawals are not correlated with 
default events or recoveries. 
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4.2 Correlations 

Table 5 reports correlations between quarterly average recovery rates and quarterly 

default rates under several different assumptions. The standard errors of the 

correlations are reported in parentheses.  The first row represents correlations for 

unfiltered recovery rates. While the correlations are clearly negative, their absolute 

magnitudes are less than those in the second and third rows which are based on 

filtered data using the OLS or inverse Gaussian regression approaches, respectively. 

Also apparent from these tables is the fact that the correlations using unfiltered data 

are, broadly speaking, little changed when one drops observations with default rates 

smaller than 0.05% or 0.075%. However, when the recoveries are filtered, the 

change become more obvious. These further support our assumption that extra 

volatility resulting from the fact that Moody’s rated obligators evolve over time 

plays down the correlation between recovery and default rates. 

5 Non-Parametric Estimates of Credit Loss Distributions 

5.1 Kernel estimates of loss distributions 

To investigate the effect of the dependency between default and recovery rates on 

portfolio credit risk models or pricing risk models, we calculate risk measures of 

credit losses, in particular, VaRs, with actual data and with data generated by 

randomly pairing up default rates and recovery rates from different periods. Through 

the later procedure, we are able to remove the dependency between the two. 

Let Lt be the total credit loss of a portfolio with equal dollar amounts in each of the 

bonds rated by Moody’s at time t, then 

 ( )ttt RDL −= 1  (5.1) 

where Dt and Rt is the default rate and recovery rate at time t.  Therefore, our actual 

series for credit loss contains 85 observations for the period of 1971 Q1 - 1999 Q4 

and 71 for 1982 Q1 – 1999Q4.  

The density of the loss function f(L), is then estimated using the following kernel 

estimator: 
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Figure 5 shows the density of total credit losses (i) for the post-1982 US data and (ii) 

for random draw data. The latter data is created by randomly pairing up quarterly 

recovery and default rate observations and then calculating total credit losses as 

defined above. We form a dataset of 100x85 observations of randomly generated 

total credit losses and then estimate the kernel density shown in Figure 5. The  

density estimated from actual data appears somewhat more peaked and hence fat-

tailed than the random draw data density.  

This impression is reinforced when one examines the corresponding cumulative 

distribution estimates shown in Figure 6. The fat-tailed nature of the distributions is 

obvious in between in the probability range 0.8 and 0.95. It is hard to tell from the 

kernel estimates, however, whether the fat-tailed behavior persists further out in the 

tails. To assess this, it is more appropriate to use a non-parametric technique 

designed for estimation of tails, which is what we do in the next section. 

Figure 7 shows VaRs for the “portfolio” for which we calculate credit losses. To 

understand the results, it is important to recall that the portfolio consists of an equal-

weight investment in all the bonds rated by Moody’s in successive quarters. Since 

we employ quarterly data, the VaRs are effectively calculated over a one-quarter 

horizon. If one used such a holding period in a calculation of capital for a financial 

institution, one would be assuming that the financial institution holding the portfolio 

could replenish its capital each quarter. 

The VaRs in Figure 7 are shown in percent of the portfolio value on the vertical axis. 

The range of VaRs is from 0.1% to 0.4%. This is much lower than the typical VaRs 
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one might expect for a bank loan portfolio. Kiesel, Perraudin and Taylor (2001) 

show that default-mode VaRs (i.e., VaRs based only on realized losses rather than 

deterioration in credit quality short of default) with a 1% confidence level are 

around 3.4% for an average US bank portfolio and 1.6% for a high quality bank 

portfolio. The Figure 7 VaRs are smaller (i) because Moody’s rated bonds have a 

higher average rating than typical bank loan portfolios and (ii) because of the 

assumption of a quarterly holding period. 

The VaRs shown in Figure 7, consistent with the cumulative distribution plots in 

Figure 6, suggest that percentage VaRs are higher for the actual data than for the 

random draw data for confidence levels in the range 1% to 10%. However, for 

higher confidence levels, it is not clear whether the actual data or random draw data 

VaRs are larger. Again, to answer the question, we need to employ Extreme Value 

Theory techniques. 

5.2 Extreme Value Theory estimates 

Extreme Value Theory (EVT) offers a range of techniques for estimating statistics of 

the tails of distributions. The main advantage of EVT is that, relying on limiting 

results of order statistics, it does not require that one assume particular distributions 

for the underlying data. For a wide class of fat-tailed distributions commonly 

encountered in finance, Extreme Value Theory results imply that the tail behaviour 

of the distribution, denoted F(x), is asymptotically given by: 

)()()(1 xQxxFxF α−≈≡−  

for a parameter α>0 and a slow-moving function Q(x). 1/α is referred to as the tail 

index. In applications, Q(x) is generally taken to be constant so that estimation of the 

tail reduces to one of estimating α.  

A variety of techniques have been proposed for the estimation of α. The simplest of 

these is the Hill estimator. If α−= CxxF )( for 0<u<x and C=uα (i.e., the 

complementary distribution is approximated with the Pareto distribution) then the 

Maximum Likelihood estimator of α is just 
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Here, Xn-j+1:n denotes the n-j+1 order statistic from a sample of n observations. 

The problem with the Hill estimator is that one must select a threshold u beyond 

which one assumes that the distribution is accurately approximated by the Pareto 

distribution. Estimates of α often vary significantly depending on one’s choice of u.  

Recently, Huisman, Koedijk, Kool and Palm (2001) have proposed a regression 

estimator for α based on the Hill estimator. This circumvents the problem of 

selecting u by calculating Hill estimates for a range of different values of u and 

taking the intercept of the regression (i.e., the “estimate” corresponding to “a zero 

value of u”) as the estimate of α. This approach while intuitively sensible can be 

justified statistically as a way of extracting information from a number of different 

estimators. The regression is complicated by the fact that the estimates for different 

values of u are correlated. Huisman, Koedijk, Kool and Palm (2001) employ 

Weighted Least Squares and show how one may calculate standard errors for the 

resulting α estimate. 

Given an estimate α̂ , one may calculate an estimate of the VaR for total credit 

losses L with confidence level p as: 
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Here, n is the sample size, k is an integer less than n and L is the sample mean. 

Given the standard error of α̂ , one may calculate the standard error of the VaR 

using the delta method. 

Table 8 contains estimates of the α parameter for different samples. The random 

draw estimates are obtained by (i) generating 100 samples each with the same 

number of observations as the corresponding actual sample, (ii) estimating α for 

each sample and then (iii) averaging the α’s. We follow this approach because we 
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are primarily interested in differences between α estimates. If the relatively small 

sample size introduces some bias, we would prefer that the bias be both in our 

estimate using actual data and in the estimate obtained using the generated random-

draw data. 

Table 6 contains estimates based (i) on data from Q1 1971, and (ii) on data from Q1 

1982. In each case, we estimate α using the actual total credit loss data and the 

random draw samples. A smaller value of α implies more fat-tailed behaviour. It is 

clear that the random draw estimates are consistent with less fat tails than the 

estimates based on the actual data.  

Figure 8 shows VaR estimates with 1-standard deviation bands based on the post 

1982 data. As one may observe, the VaR estimates for confidence levels below 1% 

are significantly higher for the actual data than those obtained using the random 

draw data. This suggests that the tail dependence between recoveries and default 

rates is sufficiently great to imply statistically larger VaRs than would be the case in 

the absence of tail dependence. 

6 Conclusion 

This paper has examined the dependence between recovery rates and default rates 

using Moody’s historical bond market data. Having filtered the recovery data to 

allow for variation over time in the pool of borrowers rated by Moody’s, we study 

simple measures of correlation between aggregate quarterly default and average 

recovery rates. These suggest that recoveries tend to be low when default rates are 

high. This provides prima facie evidence that risk measures and capital should be 

higher than one would conclude from calculations that assume independence of 

recoveries and default events. 

To investigate the issue further, we calculate VaRs using the actual data and data 

from which we have removed dependence by randomly pairing quarterly recovery 

and default rate observations from different time periods. The VaRs are calculated 

using a variety of non-parametric techniques. First, we calculate kernel estimates of 

total credit loss distributions. Second, we use Extreme Value methods based on 
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recent work by Huisman, Koedijk, Kool and Palm (2001). We conclude that there is 

evidence of VaRs are greater to a statistically significant degree when confidence 

levels exceed 1%. 
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Table 1 Comparison of mean recoveries in percent with those in past studies 

Study Bank 
Loans 

Senior 
secured 

Senior 
unsecured 

Senior 
subordinated Subordinated. 

Altman & Kishore -- 58 48 34 31 
Fons -- 65 48 40 30 
Carty & Lieberman 71 57 46 -- 34 
Van de Castle & Keisman 84 66 49 37 26 
Our data -- 53 50 38 33 

Source: Altman and Kishore (1996), Fons (1994), Carty and Lieberman (1996) and Van de Castle 
and Keisman (1999) 

 
 
 
Table 2 Average recovery rates by industry and region 

Recovery Rates in percent by Issuer Industry and Domicile 
Industries Average Volatility Numbers of Default 

Transportation 38.6% 27.4% 72 

Industrial 40.5% 24.4% 728 

Insurance 39.8% 21.4% 12 

Banking 22.6% 16.6% 25 

Public Utility 69.6% 21.8% 57 

Finance 45.6% 31.2% 11 

Thrifts 25.6% 26.3% 20 

Securities 15.4% 2.0% 2 

Real Estate 25.7% 17.2% 8 

Other Non-bank 24.8% 15.4% 15 

Sovereign 56.8% 27.4% 8 

Regions Average Volatility Numbers of Default 

Emerging market 44.1% 22.1% 22 

Non-US OECD 39.3% 27.2% 23 

Offshore banking ctr. 46.2% 25.0% 3 

US 41.0% 25.7% 910 

Note: Greece and Mexico are counted here as emerging market countries not OECD. 
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Table 3 Filtering regression results 

  All countries US 

  
OLS Est. Standard 

Error Inv Asp. Standard 
Error OLS Est. Standard 

Error Inv Asp. Standard 
Error 

Constant 0.41 0.01 -0.28 0.02 0.41 0.01 -0.29 0.03 

Emerging Markets -0.10 0.08 -0.31 0.26     

Non-US OECD -0.13 0.04 -0.41 0.15     

Off shore banking centre -0.02 0.13 -0.03 0.44         

Transport -0.06 0.03 -0.22 0.10 -0.06 0.03 -0.24 0.10 

Utility 0.22 0.03 0.67 0.11 0.21 0.03 0.65 0.11 

Banking + Thrifts -0.15 0.04 -0.62 0.12 -0.16 0.04 -0.63 0.12 

All  Others -0.07 0.03 -0.18 0.11 -0.07 0.03 -0.18 0.11 

Sovereign 0.16 0.10 0.64 0.31         

Senior Secured 0.00 0.03 0.01 0.09 0.02 0.03 0.07 0.09 

Senior Subordinated -0.12 0.03 -0.37 0.10 -0.12 0.03 -0.36 0.10 

Subordinated -0.14 0.02 -0.44 0.06 -0.14 0.02 -0.44 0.06 

Backing 0.13 0.03 0.45 0.09 0.14 0.03 0.49 0.09 

No. of Observation 958  953  910  905  
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Table 4 Fitted recoveries 

  All countries US 

  OLS Inv. Assp. OLS Inv. Assp. 

Reference Type * 0.48 0.47 0.48 0.47 

Emerging Markets 0.37 0.35    

Non-US OECD 0.35 0.32   

Off shore banking centre 0.46 0.46     

Transport 0.42 0.39 0.41 0.38 

Utility 0.70 0.73 0.69 0.72 

Banking + Thrifts 0.33 0.24 0.32 0.24 

All  Others 0.41 0.40 0.41 0.40 

Sovereign 0.63 0.72     

Senior Secured 0.48 0.48 0.50 0.50 

Senior Subordinated 0.36 0.33 0.36 0.33 

Subordinated 0.34 0.31 0.34 0.30 

Backing 0.61 0.65 0.62 0.66 

* Reference Type is US, Industrial, Senior Unsecured bond   
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Table 5 Correlations of quarterly average default rates and recovery rates 

  From 1971 From 1982 

  All Truncated
(>5bp) 

Truncated
(>7.5bp) All Truncated 

(>5bp) 
Truncated
(>7.5bp) 

No. of observations 84 66 50 71 57 45

Correlation Unfiltered -0.14 -0.23 -0.20 -0.21 -0.25 -0.23
  (0.11) (0.12) (0.14) (0.12) (0.13) (0.15)

 OLS -0.19 -0.28 -0.29 -0.22 -0.30 -0.30
  (0.11) (0.12) (0.14) (0.12) (0.13) (0.15)

 Inverse -0.19 -0.27 -0.29 -0.22 -0.29 -0.31
 Gaussian (0.11) (0.12) (0.14) (0.12) (0.13) (0.15)
 

 

Table 6 Weighted Least Squares EVT parameter estimates 

  Sample  Alpha Mean Threshold Value 
1971    Actual 3.053  0.081  0.124  

  (1.034)   

    Random-Draw 4.222  0.077  0.125  

    (1.430)     

1982    Actual 2.636  0.081  0.115  

  (0.893)   

    Random-Draw 4.766  0.075  0.108  

    (1.615)     
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Figure 1 Empirical distribution of recoveries 

 

Figure 2 Quarterly average filtered recovery and default rates over time for US 

data 
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Figure 3 Scatter plot of quarterly average filtered recovery and default rates 

for US data, 1971-1999 

Figure 4 Scatter plot of quarterly average filtered recovery and default rates 

for US data, 1982-1999 
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Figure 5 Kernel estimate of Total Credit Loss density 

 
 
Figure 6 Kernel estimate of Total Credit Loss cumulative distribution function 
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Figure 7 Kernel estimates of VaRs for different confidence levels 

 
Figure 8 VaR for 1982 – 1999 credit loss data using WLS estimation of α  
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