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Estimating Volatility for Long Holding
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Riidiger Kiesel =~ William Perraudin Alex Taylor
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ABSTRACT Sample volatilities calculated from short-interval (daily) data do not
necessarily imply much about volatility of financial assets over long (yearly) horizons.
In this note we construct a model-free volatility estimator to investigate the long
horizon volatility of various short-term interest rate time series and study implications
for short-rate models.

1 Introduction

The problem of estimating volatility is one of the most important
topics in modern finance. Accurate specification of volatility is a
prerequisite for modelling financial time series, such as interest rates
or stocks, and crucially affects the pricing of contingent claims. Mod-
elling volatility has therefore be widely discussed in the financial lit-
erature, see e.g. Campell, Lo, and MacKinley [7], chapter 12, Shiryaev
[21], chapter 4, or Taylor [22], chapter 3 for overviews on the subject.
The main focus in these studies has been to estimate volatility over
short time periods and deduce results for longer period volatility
from underlying models.

In this note we address the problem of estimating volatility over
longer time intervals directly. Recently several attempts have been
made to address this problem, most notably work by Andersen,
Bollerslev, Diebold and Labys [1, 2], who use intraday observations
to estimate the distribution of daily volatility, and Drost, Nijman
and Werker [12, 13], who consider temporal aggregation of GARCH
processes. In contrast to these approaches we do not assume any
underlying parametric model for the data-generating processes. Our
only assumption is that the data-generating process is first-difference
stationary. The model free approach leads to an estimator, which is
insensitive to short-period contamination and only reacts to effects
relevant to the time period in question. Applications of the proposed
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estimator can be found in Cochrane [9], who used the estimator to ob-
tain a measure of the persistence of fluctuations in GNP, and Kiesel,
Perraudin and Taylor [17], who estimated the long term variability
of credit spreads.

Related to our estimation problem are so-called moment ratio
tests, which are frequently used to investigate the (weak) efficiency
of financial markets, see Campbell et al. [7], chapter 1, or Pagan [20]
for surveys and Lo,MacKinlay [18] and Groenendijk et al. [16] for
applications related to this investigation.

The motivation behind the estimator is as follows. From the as-
sumption that the data-generating process z; is first-difference sta-
tionary (i.e. contains a unit root), we obtain from Wold’s decompo-
sition (see e.g. [15], §2.10) an infinite moving average representation

oo
AJ?t =Tt — Tt—1 :,U/‘i‘za]ft,j. (].)
Jj=0
Using this representation a result by Beveridge and Nelson [3] implies

that z; can be represented as the sum of a stationary and a random
walk component, i.e

Ty =Y+ 2t (2)
where
o0 (0] o0
-y = Zaj € + Zaj €1+ Zaj €2+ ... (3)
i=1 i=2 i=3
o0
Z = gtz t Zaj €t, (4)
=0

with (&) a sequence of uncorrelated (0,02) random variables.

The long-period behaviour of the variance of the process x; may
differ substantially for processes with representation (2). This be-
comes of particular importance for valuation of contingent claims
and, in case of interest rate models, for bond pricing, since the pric-
ing formulae crucially depend on the volatility. Since, in general,
the long-term behaviour of the variance of x; is dominated by the
variance of the random walk component, the use of a volatility es-
timator based on daily time intervals to contingent claoims/bonds



longer time to maturity may lead to substantial pricing errors. In
the next section we introduce the estimator and discuss some of its
properties. We perform Monte Carlo experiments to illustrate the
properties of the estimator in section 3. In section 4 we apply it to
estimate long holding period variances for several interest rate se-
ries. By analysing the quotient of long-term to short-term variances
(variance ratio) we can infer the magnitude of the random walk com-
ponent in the short term interest rate process. This has implications
for the appropriate modelling of the short rate and relates to recent
results on the empirical verification of various short-term interest
rate models, see [4, 8]. Section 5 concludes.

2 Construction and Properties of the Estimator

We start with a general representation of a first-difference station-
ary linear process as the sum of a stationary and a random walk
component, i.e

Ty =Yt + 24 (5)

with
ye = B(L)d (6)
zy = WAzt e, (7)

with B(L) a polynomial in the lag operator Ld; = §;_1, (€;) uncorre-
lated, (0,0?) random variables, and IF(e;d;) arbitrary. Such a decom-
position implies that IE;(xs1r) ~ 2z; + ku. In that sense we call z; the
permanent and y; the temporary component of z; (compare also [7]
for a related model and interpretation). This suggests that the long
term variability of z; is also dominated by the innovation variance
O'2AZ of the random walk component. Utilizing the Beveridge-Nelson
[3] decomposition of a process z; given by (5) one can show that the
innovation variance O'2AZ is invariant to the particular decomposition
of type (5) chosen (in particular, only the Beveridge-Nelson decom-
position is guaranteed to exist, see also [9]). To make the above ar-
guments on the importance of the innovation variance more precise,
consider the k—period variability. A standard argument (compare
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§2.1) shows

k—1

Vary(or — ) = kyo +2 ) (k= 4)7;, (8)
7j=1

with 7; the autocovariances of the stationary process (Az;) = (z; —
z¢—1). Then

pj | oas = Sazle ™),

(9)

where p; are the autocorrelations and Sa,(e is the spectral den-
sity function at frequency w of (Ax;). A further application of the
Beveridge-Nelson decomposition implies

1 o (k— )
klg{)lo %Va/'rt($t+k — ) —kll)rgo 1+2j .

7iw)

Sas(e®) = A (10)

Therefore, in order to estimate 0’2AZ we could use an estimator of the
spectral density at frequency zero. However, estimating the spectral
density function at low frequencies is extremely difficult and involves
a trade-off between bias and efficiency of the estimator (see e.g. [15]
§7.3 for such estimators and their properties). So, rather then relying
on estimators for the spectral density function, we proceed directly
with an estimator suggested by (8)-(10). In particular, (8) suggests
to replace the autocovariance functions with their sample estimators
and then employ well-known limit theorems for the sample autoco-
variances.

2.1 Large Sample Properties

In order to use (8) we recall that, under our assumptions, Az is
a covariance stationary process and, as such, has a moving average
representation (1). Limit theorems for the sample autocovariances of
such processes have been studied extensively (see [11], [14] §7, [15],
§6) and we intend to utilize some of these results (much the same
way as [18] did). Let us start by expressing the basic estimator

T k 2

ot = 7 30 (@ = a100) = o a0 (1)
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in a different form. Define ¢; = z; — 2;_1 — & (z7 — z0) then (11)
becomes

1 T [k 1 2
5']% = ﬁ Z 2(17]'—]4;-1—[ — XTj—ktl—1 — T(a:T _ :L‘U))]
j=k Li=1
AN 2
- T_kz Zéjfkﬂ
j=k Li=1
1 TRk k-1
T Tk [Z Sut2Y Enéin +...+2gj+1gj+k]
k—1 92
= %(0)+2( . )ﬁ(1)+...+%@(k_1)+0(_)
where
| T=h
Wh) =7 D &éien
Jj=0

and o (.) specifies an error term in probability depending on the dis-
tribution of the innovations. Define the vector 4 = (%(0),... ,5(k —
1)), then we can write

i =U4+o0() (12)
with I the k-dimensional vector I = (1, Q(k;) .-, 2)'. We therefore
can use limit theorems on the asymptotic distribution of 4 to deduce
the asymptotic distribution of our estimator 6,%. These limit theorems
depend crucially on the distribution of the innovations e in (1). If
E(e') < oo, the limit distribution of 4 is Gaussian, see e.g. [5],
§7.3,613.3, [15] §6.3. If IE(e*) = 00,02 < oo (and further regularity
conditions are satisfied), the limit distribution consists of a stable
random variable multiplied by a constant vector, see [11] and [14]
§7.3 for details. Hence, in the first case the asymptotic distribution
of 5,3 will be Gaussian, while in the second case it will asymptotically
be distributed according to a stable law.

2.2 Small Sample Adjustments

In small samples, the estimator (11) exhibits a considerable bias.
To discuss possible adjustments we assume that the data generating
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process is a pure unit root process, i.e. equation (5) becomes
A=Az =p+ e (13)

with (e;) uncorrelated (0,02) random variables. So we can write the
numerator of the estimator (11)

((fvj —Tj ) — %(W - 960)) 2

(kquZeg -~ (Tu+ZeT u>>2
(5450

v=n—k+1

E

N, =

<.
Il
=

Il
M=

k

J

|
.Mﬁ

Il
=

J

Defining Zj;, = Y/

ikt €V and using the fact that the €, are
uncorrelated we get

T 2

BN, = Y (B2 - F Bt + Py )
=k
4 262 k2 k
= IE(EZ)jZk (k—TJrT) :az(T—kJrl)(T—k)f

So in order to get an unbiased estimator for o2 using the quantity
N, we have to multiply it by
T
k(T —k+1)(T —k)’
which is just the adjustment proposed by Cochrane (compare [9])
and leads to

T

N T k 2
% = k(T —k)(T —k+1) j;k [(xﬂ' —Tj k) = T(QUT —xo)| - (14)

If we assume that the innovations in (13) are uncorrelated with ex-
isting fourth moment we can use the asymptotic equivalence of the
estimators (11) and (14) to deduce the weak convergence?

VT (6% — 62) = N(0,0*((2k* + 1)/3k)). (15)

2We denote weak convergence by ?=".



If, however, the last existing moment of the innovations in (13) is of
order 2 < « < 4, i.e the variance exists, but the fourth moment is
infinite, we have the weak convergence

C(T, )62 = VS, (16)

where S is a stable random variable with index «/2 and C(T, @)
a constant depending on the 7" and the tail behaviour of the inno-
vations, which is related to the index «. (The relevant asymptotic
result for the autocovariances is Theorem 2.2 in [11], where the exact
values of the constants to be used to construct the vector  in (12)
can be found). If we drop the assumption (13) the limit laws remain
of the same type. However, the variances change considerably since
they depend on the autocovariances of the process.?

G2 @ .e. .e. 52 b .e. .e.t &,% d s.e. s.e.‘

w/ || 0.999 0.048 0.048 || 0.860 0.039 0.040 || 1.169 0.057 0.059
0.999 0.096 0.094 || 0.835 0.077 0.078 || 1.120 0.115 0.117
0.997 0.167 0.163 || 0.830 0.137 0.136 || 1.206 0.199 0.202
0.991 0.347 0.333 || 0.822 0.288 0.278 || 1.212 0.422 0411

<o

TABLE 1. Model with i.i.d. Gaussian innovations

“model: Az¢ = e with ¢ ~ N(0,1) and O'ZAZ = 1. First s.e. column are always Monte-
Carlo, second s.e. column are asymptotic s.e. assuming existence of the fourth moment.

2
bmodel: Azy = aAxi_1 + € with e ~ N(0,1) and O'ZAZ = (ﬁ) o2, here O'ZAZ = 0.826
¢Adjusted for AR(1)-covariance structure
dmodel: Azt = e + aei—1 with ¢, ~ N(0,1) and o2, =(1- a)? 02, here 0%, =121
¢Adjusted for MA(1)-covariance structure
fw=week, m=month, q=quarter, y=year

3For instance in case the IE(et) = not we have limn_ 0o Cov(v(p)v(q)) = (n —
3)7(P)r(@) + R [(V(E)Y(k —p +q) —v(k + ¢)y(k — p)] and thus (y1,...,7%)" ~
N((Vi,... %), T~1V), where V is the covariance matrix (see [5], §7.3). This implies

an asymptotic standard normal distribution of a,% with variance I' V1.
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3 Monte Carlo Illustrations

In this section, we illustrate our estimating procedure using simu-
lated time series. We consider three basic settings of first-difference
stationary sequences with representation (1). First, as a benchmark
case, we consider a pure random walk with representation as in (13).
To study the effect of non-zero autocovariances of the series (Az)
on the asymptotic standard error, we simulate two further series,
namely a sequence, whose first-difference follows an autoregressive
model of order one (AR(1)-model) implying an infinite order moving
average representation and on the other hand, a sequence, which has
first-differences allowing a moving average representation of order
one (MA(1)).

These settings imply that the error terms in (5) are perfectly cor-
related. The AR-model corresponds to a ‘small’ random walk com-
ponent (in our setting it accounts for roughly 70% of variability of
(zx) in (5)). The MA-model, on the other hand, corresponds to a
‘large’ random walk component, the innovation variance of the ran-
dom walk component (zx) in (5) is larger (due to dependence) than
the innovation variance of the series (xy).

G2 @ s.e. s.e. 620 s.e. s.e.t 62 @ s.e. s.e.’

2980 0.962 0.144 || 2.555 0.644 0.120 || 3.507 1.388 0.1779
m || 2.977 0.983 0.283 || 2.483 0.667 0.237 || 3.602 1.458  0.349
q 2970 1.023 0490 || 2.467 0.753 0.490 || 3.618 1.467  0.605
y 2992 1.406 1.000 | 2.464 1.107 0.834 || 3.621 1.868 1.234

&
N

TABLE 2. Model with i.i.d. ¢(3) innovations

“model: Az¢ = € with e ~ ¢(3) and 0 ; = 3. First s.e. column are always Monte-Carlo,
second s.e. column are asymptotic s.e. assuming existence of the fourth moment.

bmodel: Azt = aAzi_1 + €¢ with €4 ~ t(3) and O'QAZ = (ﬁ)2 0'?, here O'QAZ = 2.479
¢ Asymptotic standard error, adjusted for AR(1)-covariance structure

dmodel: Azt = €; + ae—1 with € ~ t(3) and 0’2AZ =(1- a,)2 (r?, here O'QAz = 3.63
¢Asymptotic standard error, adjusted for MA(1)-covariance structure

fw=week, m=month, q=quarter, y=year

For each of these series, we consider three types of innovation pro-
cess. As a standard model we consider i.i.d. Gaussian innovations.



Then we investigate the effect of heavy-tailed innovations using i.i.d.
Student ¢(3) innovations, and finally to discuss (second order) de-
pendence we use GARCH(1,1)-innovations. Each experiment con-
sisted of generating a series of length 3000 (with coefficients in line
with coefficients obtained performing the corresponding ARIMA (-
GARCH) for the series used in §4) and was repeated 5000 times.
We report the mean of long-period volatility estimators for periods
of length k£ = 5,20, 60,250 (weeks, month, quarters, years) together
with standard errors (s.e.) computed from the Monte-Carlo simula-
tions and according to the asymptotic results for an underlying pure
unit root process with an existing fourth moment.

oz @ s.e. s.e. 630 s.e. s.e.C 67 @ s.e. s.e.t
wl || 4.078 0.278 0.192 || 3.505 0.237 0.161 || 4.770 0.324 0.237
m 4.066 0.437 0.378 || 3.390 0.370 0.315 || 4.887 0.528 0.466
q 4.037 0.710 0.653 || 3.348 0.595 0.545 || 4.897 0.871 0.806
y 4.004 1.442 1.333 | 3.323 1.187 1.113 || 4.903 1.767 1.645

TABLE 3. Model with GARCH(1,1) innovations

model: Az; = € with ¢¢ ~ GARCH(1,1) and 0’2AZ = 0.004. First s.e. column are
always Monte-Carlo, second s.e. column are asymptotic s.e. assuming existence of the fourth
moment.

bmodel: Azt = aAzi_1 + e with e ~ GARCH(1,1) and O'QAZ = (ﬁ)z ‘7527 here O'QAZ =
0.003306

¢Adjusted for AR(1)-covariance structure

dmodel: Az¢ = € + aer—1 with € ~ GARCH(1,1) and 0’2AZ =(1- a)2 (r?, here O'QAZ =
0.0484

¢Adjusted for MA(1)-covariance structure

fw=week, m=month, q=quarter, y=year

In line with the asymptotic consistency of the estimator €}, (com-
pare 8) the estimated value converges towards the true value of the
innovation variance of the random walk component in all cases. For
Gaussian and GARCH innovation (cases for which the appropriate
limit theory holds) the asymptotic standard errors are in line with
the observed Monte Carlo errors. As expected the asymptotic stan-
dard errors (calculated under the assumption of an existing fourth
moment) become unreliable for heavy tailed innovation, i.e. simula-
tions based on ¢(3) innovations.
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Since for shorter series the asymptotic standard error becomes un-
reliable we also tested various bootstrap based methods. Motivated
by the application we have in mind we concentrated on series with
length 1000 and standard normal or GARCH innovations. It turned
out, that fitting a low-order AR-model to the simulated time series
and resampling from the residuals produced satisfactory bootstrap
standard errors.

lag 60 lag 250

Model &,% ¢ B-s.e. A-s.e. &,% B-s.e. A-s.e.

RW? 0.950 0.263 0.286 1.015 0.359  0.583
AR(1) 0.820 0.277 0.253 | 0.9314 0.668 0.823
MA(1) || 1.199 0.349 0.363 1.270 0.816 0.841
RW¢ 3.886 1.163 1.117 | 3.997 2.634  2.366
AR(1) 3.282  0.960 0.952 3.041 1.887 1.926
MA(1) || 4.702 1.311 1.395 | 4.814 2.823 2.946

TABLE 4. Bootstrap estimates of standard errors

2All on a time series of length 1000 with 5000 bootstrap resamples, pa-
rameters chosen as above

bstandard Normal innovations

¢GARCH-Innovations, values multiplied by 103

4 Applications

Empirical comparisons of continuous-time models of the short-term
interest rate have recently been the focus of several studies (see e.g.
[4, 6, 8, 10]). In these studies the general class of single-factor diffu-
sion models

dr = (u — kr)dt + or7dW, (17)

with constant coefficients and W a standard Brownian motion has
been compared. We will consider the subclass, where we restrict the
parameter 7 to take one of the values 0,1/2 or 1, so e.g. the Vasicek
and the Cox-Ingersoll-Ross model are included. The discrete-time
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analog of this model class is

Tt —Tt—1 = « + B'rtfl + €t (18)
E(e|F, 1) = 0, E(E|F, 1) =0,

with F} the information set at time ¢. A model like this will generate
a time series within our framework if 8 = 0. If we focus on the
unconditional long-term variance a standard calculation shows, that
we have the following asymptotic relations (under § = 0)

vy=0 War(r) ~t
v = % Var(ry) ~ 2
y=1 War(ry) ~e“

(¢ a constant). Using the Cochrane-type estimator we can com-
pare the observed long-term variances with variances predicted from
the model setting. We apply this idea to three short-term (7 day-

maturity) interest rate series. The rates we use are US EURO-DOLLAR

(with 3512 observations from 01.01.85 — 18.06.98), UK EURO-POUND
(with 3401 observations from 01.01.85 — 13.01.98), and German EURO-
MARK (with 1222 observations from 09.01.95 — 14.09.99).

rate o1 o3 6% 630 6350
US EURO-DOLLAR 0.0537 0.0438 0.0149 0.0077 0.0092
(0.0055%)  (0.0092) (0.0107) (0.0022) (0.0051)

UK EURO-POUNDS$ 0.0439 0.0293 0.0189 0.0169 0.0212
(0.0051) (0.0076) (0.0123) (0.0080) (0.0118)

GER EURO-MARK$ 0.0059 0.0048 0.0015 0.0013 0.0018
(0.0031)  (0.0029) (0.0009) (0.0008) (0.0008)

TABLE 5. Short rate volatilities

2For lags 1 to 20 s.e are based on asymptotic calculations, for lags 60 and
250 s.e. are bootstrap based

To ensure the validity of the assumption § = 0 we performed var-
ious tests for unit roots and stationarity*. For all series we can’t

4For the unit root tests we used the augmented Dickey-Fuller and Phillips-Perron
procedures and for testing stationarity the Kwiatkowski-Phillips-Schmidt-Sin test (see
[19] chapters 3 and 4 for a description and discussion of these tests)
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reject the presence of a unit root at a 10% significance level, whereas
stationarity of the series is rejected at the 1% significance level. Ap-
plying these tests again to the first-difference of the series indicated
no evidence of a unit root in the differenced series. The combination
of these test results allows us to conclude the ball series should be
modelled as first-difference stationary and fit into our framework.

We report the results for the interest series in table (5). From a
model-free point of view (that is within the general framework (5))
these results indicate, that using the one-day volatility estimate will
seriously overestimate longer term volatility.

1.0

o
o]
\

o
o
\

©
~
\

0.2

—— USrate
““““ UKrate
------- GYrate

0.0

FIGURE 1. Variance-Ratios for short-term interest rates

Turning to the question of modelling short-term interest rates
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within the class of one-factor diffusion models we calculate and plot
the ratio of the volatility calculated over a longer holding period to
that calculated over one day multiplied by k (see figure 1). For all
rates considered the ratios are downward slopping for short holding
periods (the mean-reverting component dies off). After a period of
stability the variance ratio begin to increase linearly showing a be-
haviour roughly in line with the asymptotics of a Cox-Ingersoll-Ross
model.

5 Conclusion

We presented a non-parametric method to estimate long-term vari-
ances and the magnitude of the unit root process in various interest
rates. Our results that calculating long-term variances on the basis of
short-term variance estimates will overestimate long-term variances.
Our results further indicate that within the one-factor diffusion short
rate model class square-root type processes model the behaviour of
long-term variances of short rates best. Vasicek-type models, which
assume that the short rate follows a mean-reverting process and thus
omit a unit root component in the data-generating process, will lead
to an underestimating of long-term variances, since for longer time
horizons the unit-root component of the interest-rate process be-
comes dominant. Our findings support a model of Cox-Ingersoll Ross
type without a mean-reverting component.
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