
 
 

Research Paper 
 
 
 

Dynamic Pricing of Synthetic Collateralized 
Debt Obligations 

 
 

 
 
 
 
 
 
Date:2008 
Reference Number:8/1 
 

 



DYNAMIC PRICING OF SYNTHETIC

COLLATERALIZED DEBT OBLIGATIONS

Robert Lamb

Imperial College

London

William Perraudin

Imperial College

London

Astrid Van Landschoot

Standard & Poor’s

London

March 2008∗

Abstract

This paper applies a new class of dynamic credit loss rate models to the
pricing of benchmark synthetic Collateralized Debt Obligations (CDOs). Our
approach builds directly on the static, industry-standard, pricing approach to
credit structured products based on Vasicek (1991). We generalize the Vasicek
model by allowing risk factors to be driven by arbitrarily complex autoregres-
sive processes. We show how to benchmark our model using CDX prices, and
demonstrate that it can consistently and accurately fit the prices of multiple
tranches with different subordination levels and tenors. Among other interest-
ing results, we find that changes in tranche spreads are driven less by alterations
in the market’s estimate of default correlation (which is stable over time) and
more by fluctuations in market perceptions of the persistence of credit shocks,
i.e., the persistence of the credit cycle.

∗The authors’ may be contacted at rlamb@imperial.ac.uk, wperraudin@imperial.ac.uk or
astrid vanlandschoot@standardandpoors.com.
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1 Introduction

The credit derivatives market has grown exponentially in recent years. At the end of

2006, its size exceeded $30 trillion according to estimates by the British Bankers As-

sociation. One of the most actively traded categories of credit derivatives is synthetic

CDOs. In a typical transaction, a protection seller agrees to bear losses incurred on

a pool of credit exposures to a set of named borrowers with some notional or par

amount. In return, a protection buyer pays the seller a premium proportional to the

notional of the transaction. Losses in these deals are usually tranched in the sense

that the protection seller promises to bear losses in some specified range such as from

3% to 6% of the notional.

Much of the trading in synthetic CDOs revolves around standardized contracts

such as the iTraxx and the CDX. The names underlying these contracts are the debt

issuers for which single-name Credit Default Swaps (CDS) are most widely traded.

Because these names are central to the international debt markets, basket credit

derivatives based on them like the iTraxx and CDX have come to now play a key role

for market participants wishing to take on or hedge exposure to the credit market in

general.

Researchers have developed a series of simple models for pricing synthetic CDOs.

An important model widely used by market participants is based on a loss distribution

originally derived by Vasicek (1991). The Vasicek model has been elaborated and

extended by many studies, including Schonbucher (2002), Laurent and Gregory (2005)

and Hull and White (2004). A comparative survey of such models is provided by

Burtschell, Gregory, and Laurent (2005). The industry primarily uses a simple but

robust version of the Vasicek model, namely the so-called base correlation approach

described by McGinty and Ahluwalia (2004).

Instead of generating a loss distribution, in an influential contribution Li (2000)

showed how one may simulate correlated default events using a Gaussian copula.

Other copulas have then been suggested. Schonbucher and Schubert (2001) looks

at these in detail including models with “infectious defaults” (i.e., models in which

default probabilities for other names increase when a given obligor defaults). Giesecke

and Goldberg (2005) also look at self-exciting processes where intensities respond to

events as they occur. An early example of infectious defaults can be attributed to

Davis and Lo (2001).
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A major drawback of the Vasicek model and most of its generalizations is that

these models are static. A loss distribution is formulated for a credit portfolio held

over some fixed time such as the maturity of a synthetic CDO. A deal is valued by

calculating the discounted, expected loss on a tranched exposure to this loss distri-

bution. This approach does not yield consistent pricing of tranches with different

maturities as risk is modeled from the standpoint of a single point in time and there

is no attempt to develop a consistent set of distributions for losses over different

horizons. Also, analysis of hedging is difficult within static models as there is no

consistent framework for examining the behavior of price changes from one period to

the next.

For these reasons, researchers have focussed on deriving dynamic models for pric-

ing CDOs. Before reviewing recent research, it is worth noting that one of the earliest

studies of CDO pricing, Duffie and Garleanu (2001), employed a fully dynamic model.

These authors generated correlated intensities using affine processes for individual

names and apply these to CDO valuation. The main problem with this approach is

that it is known to exhibit limited correlated defaults even when using perfect correla-

tion between two hazards, see Das, Duffie, Kapadia, and Saita (2007). Also practical

difficulties due to Monte Carlo simulation and the complexities of calibration.

More recently, Chapovsky, Rennie, and Tavares (2006) propose a similar model.

In their framework, individual defaults are driven by a hazard rate equal to the sum

of a common random process with known dynamics, such as a CIR process, and a

deterministic function calibrated to individual names. Giesecke and Goldberg (2005)

develop an intensity based approach to modeling total portfolio losses, inferring single

name default processes using ‘thinning’ techniques. Hull and White (2007) present a

reduced form model in which the hazard rate for a company follows a deterministic

process that is subject to periodic impulses. This leads to a jump process for the

cumulative hazard rate. The model allows to value CDOs and options on CDOs

analytically.

Recently, Sidenius, Piterbarg, and Anderson (2006), Schonbucher (2006) and

Brigo, Pallavicini, and Torresetti (2007) amongst others have developed dynamic

approaches modeling evolution of the losses on a portfolio. Sidenius, Piterbarg, and

Anderson (2006) and Schonbucher (2006) are very similar in spirit. Both models are

akin to the Heath-Jarrow-Morton term structure framework where they model the

full forward distribution of the loss process. Sidenius, Piterbarg, and Anderson (2006)
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models the loss distribution in absence of information about default times. Calibra-

tion to the market is performed by conditioning upon a background process. The

loss process then evolves as a Markov process based on the path of the background

process.

Schonbucher (2006) looks at the transition rates of the loss process that are in-

ferred from a Markov chain based on the transition probability distribution. Dy-

namics are then introduced by allowing the transition rates to be stochastic. Brigo,

Pallavicini, and Torresetti (2007) assumes the loss process is a sum of independent

Poisson processes that incorporates correlation into the model. He later builds dy-

namics into the model by allowing the intensities of the Poisson processes to be

dynamic.

Lamb and Perraudin (2006) show how the dynamics may be introduced into the

simple Vasicek (1991) by allowing the common factor to be an autoregressive time

series process. They derive a closed form expression for a simple transformation of

the losses on a credit portfolio and then apply this in modeling losses on aggregate

loan portfolios of large US banks.

The contribution of the current paper is to generalize the Vasicek in a direct way

to conditionally-evolving dynamic loss distributions and then to apply this approach

to pricing synthetic CDOs. Though we focus here on synthetic CDOs, a type of struc-

tured product that has a very simple cash flow “waterfall” structure, our approach

could be employed for pricing a much wider set of securitization-style exposures.

In Section 2 of the paper, we derive the dynamic process for the portfolio loss

distribution when common factors possess an arbitrarily complex autoregressive form.

We show how the distribution of losses at future dates is affected by conditioning

information. In Section 3, we describe how the dynamic loss distribution may be

employed in synthetic CDO valuation. In Section 4, we fit the model to data on CDX

contract spreads. Section 5 concludes.
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2 Dynamic Loss Model

2.1 Loss Rate Process

Suppose that time is discrete taking values t = 0, 1, . . . and that there are n obligors

in an economy. Given survival until t− 1, obligor i defaults at time t if:

Zi,t ≤ ct (1)

for a constant, ct. As there are multiple obligors, default correlation is introduced

into the model by defining Zi,t to be a latent random variable such that:

Zi,t =
√

ρXt +
√

1− ρεi,t. (2)

Here, the common factor, Xt, is a standard normal random variable. The obligor-

specific idiosyncratic shock, εi,t, has a distribution function H, a zero mean and unit

variance, and is independent of Xt. This implies that Zi,t also has unit variance and

zero mean and that the pairwise correlation between i and j for any i and j is ρ.

The distribution of Zi,t denoted G may be obtained as the convolution of H and

a standard normal distribution function Φ. G depends on ρ and on a vector of

parameters describing H denoted ν. G equals:

G(z) =

∫ ∞

−∞
H

(
z −√ρx√

1− ρ

)
dΦ(x) . (3)

Given this distribution, one may express the unconditional probability that default

will occur at a future date t:

qt = Prob (default at t) = G (ct) . (4)

The model so far described resembles that of Vasicek (1991), in that it is static. To

introduce dynamics, we follow Lamb and Perraudin (2006) by allowing Xi,t to be a

pth-order autoregressive stochastic process:

Xt =

p∑
i=1

φiXt−i + σηt. (5)

Here, ηt is assumed to be standard normal and independent of εi,t.

As a normalization, we require that Zi,t has a unit unconditional variance which,

in turn, implies that Xt has unit unconditional variance. In the Appendix, we derive
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the unconditional standard deviation of Xt when σ is unity. Setting σ to be the

inverse of this quantity ensures that Zi,t is appropriately normalized.

Given the above setup, a dynamic process can be derived for the loss rate of a

pool of obligors. The derivation of this generalizes the model of Lamb and Perraudin

(2006) to the multi-lag case and allows for non-Gaussian latent variable distributions.

A sketched proof is provided.

Substitution of equation (2) into (1) shows that default occurs when :

√
ρXt +

√
1− ρεi,t ≤ ct. (6)

The probability of observing k defaults out of n obligors, conditional on Xt−1, denoted

P (k, n), may be expressed as:

P (k, n) =

(
n

k

)∫ ∞

−∞
H

(
ct −√ρ (

∑p
i=1 φiXt−i + σηt)√
1− ρ

)k

×
[
1−H

(
ct −√ρ (

∑p
i=1 φiXt−i + σηt)√
1− ρ

)]n−k

dΦ(ηt) . (7)

Adopting the change of variables:

s(η) ≡ H

(
ct −√ρ (

∑p
i=1 φiXt−i + σηt)√
1− ρ

)
, (8)

one obtains:

P (k, n) =

(
n

k

)∫ 1

0

sk (1− s)n−k dW (s) , (9)

where

W (s) ≡ Φ

(√
1− ρH−1(s)− ct +

√
ρ

∑p
i=1 φiXt−i

σ
√

ρ

)
. (10)

As the number of obligors increases to infinity, n →∞, one may derive an expression

for the fraction of the pool that defaults denoted θ:

lim
n→∞

[nθ]∑
i=0

P (i, n) =

∫ 1

0


 lim

n→∞

[nθ]∑
i=0

(
n

i

)
si(1− s)n−i


 dW (s) (11)

=

∫ 1

0

1(s < θ)dW (s) = W (θ)−W (0) = W (θ) . (12)

Hence, the loss distribution conditional on Xt−1 is:

W (θt) ≡ Φ

(√
1− ρH−1(θt)− ct +

√
ρ

∑p
i=1 φiXt−i

σ
√

ρ

)
. (13)
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This implies that the transformed loss rate θ̃t ≡ H−1(θt) conforms to the following

Gaussian distribution:

θ̃t ≡ H−1(θt) ∼ N

(
ct −√ρ

∑p
i=1 φiXt−i√

1− ρ
,

σ2ρ

1− ρ

)
. (14)

Hence, the transformed loss rate may be expressed as:

θ̃t =
ct −√ρ

∑p
i=1 φiXt−i√

1− ρ
− σ

√
ρ√

1− ρ
ηt. (15)

where ηt is standard Gaussian. Alternatively, by substituting back in for the factor

at time t, one may write the transformed loss rate as:

θ̃t =
ct −√ρXt√

1− ρ
. (16)

Rearranging equation (15), lagging and substituting, one may obtain:

θ̃t =

p∑
i=1

φiθ̃t−i +
1√

1− ρ

(
ct −

p∑
i=1

φict−i

)
− σ

√
ρ√

1− ρ
ηt. (17)

2.2 Conditional Loss Distributions

To use the above model of loan losses in pricing applications, we must consider how

the distribution of losses behaves conditional on recent factor realizations. At a given

date, one may assume that the market observes a set of factor realizations and that

the pricing of single name and multi-name credit derivatives is consistent with these

realisations.

From a modeling viewpoint, this amounts to considering the process, Xt, at date 0

conditional on realizations before time 0, namely (Xp−1, . . . , X−1, X0). Conditioning

on these realizations implies that current and future Xt’s will have variances less than

unity. The distribution of defaults for individual names at some date T will no longer

be G but will instead will be a conditional distribution Gt,T . As T increases, the

effect of the conditioning on the initial factors will become smaller, the variance of

Xt will again approach unity and individual defaults will again be determined by G.

To see how to condition on past factor realizations, note that a pth-order AR

process may be written in matrix form as a 1st-order AR process:

X t = FX t−1 + σνt. (18)
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where X t ≡ (Xt, Xt−1, . . . , Xt−p+1)
′ and ηt ≡ (ηt, 0, . . . , 0)′ and where F is defined in

equation (A9) in the Appendix.

Recursive substitution of this to time t leads to:

X t = F tX0 + σ
t−1∑
j=0

F jνt−j, (19)

or in matrix form:



Xt

Xt−1

...

...

Xt−p+1




= F t




X0

X−1

...

...

X−p+1




+ σ

t−1∑
j=0

F j




ηt−j

0
...
...

0




. (20)

The first row of this system gives Xt in terms of the factor values up to and including

X0:

Xt =

p∑
i=1

f
(t)
1,i X1−i + σ

t−1∑
j=0

f
(j)
1,1ηt−j, (21)

where f
(t)
1,i is the (1, i) element of F t.

Now, substitution of this into (1) and (2) shows how the default of obligor i at

time t is driven by the initial factor values and the compounded shocks:

√
ρ

(
p∑

i=1

f
(t)
1,i X1−i + σ

t−1∑
j=0

f
(j)
1,1ηt−j

)
+

√
1− ρεi,t ≤ ct. (22)

By conditioning on the information at time 0, we show how the distribution of the

default quantile deviates from the unconditional case. Conditioning gives:

√
ρσ

t−1∑
j=0

f
(j)
1,1ηt−j +

√
1− ρεi,t ≤ ct −√ρ

p∑
i=1

f
(t)
1,i X1−i. (23)

Defining:

c0,t = ct −√ρ

p∑
i=1

f
(t)
1,i X1−i, (24)

gives:

√
ρσ

t−1∑
j=0

f
(j)
1,1ηt−j +

√
1− ρεi,t ≤ c0,t, (25)
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which, due to the shocks all being independent, is a G0,T -distributed random variable

where G0,T is the convolution of :

Φ




x√
ρσ2

∑t−1
j=0

(
f

(j)
1,1

)2


 and H

(
ν√

1− ρ

)
. (26)

The probability conditional on information at date 0 of default at a future date t by

a single name is now:

q0,t = G0,t (c0,t) . (27)

Rearranging this equation shows how the default quantile ct is altered by the condi-

tioning information:

ct = G−1
0,t (q0,t) +

√
ρ

p∑
i=1

f
(t)
1,i X1−i. (28)

When t is close to 0, the conditioning factor values are still dominant and these perturb

the default quantile from its unconditional case. As t → ∞ the term containing the

initial factors becomes negligible and:

lim
t→∞

σ2

t−1∑
j=0

(
f

(j)
1,1

)2

→ 1 lim
t→∞

G0,t(z) → G(z) . (29)

3 CDO Valuation

3.1 Tranche Valuation

To value tranches of a CDO, one may simulate the transformed loss rate process

in equation (17), and then calculate the cumulative loss to the pool in each future

period. Suppose that a structure pool has total exposure of unity and the loss rate

in any future period is assumed to be θt. The cumulative loss rate is then defined as:

Lt = 1−
t∏

i=1

(1− θi) . (30)

If the pool has been tranched in a particular way to create levels of subordination,

then the loss to a specific tranche, denoted j, can be calculated using:

Ltr
t,j = min (max ((1− γ) Lt − A1,j, 0) , A2,j − A1,j) , (31)
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where A1,j and A2,j are the attachment and detachment points respectively and γ is

the recovery rate.

To value a tranche, one must consider two sets of cash flows. The tranche holder

offers protection against losses in a given range defined by the attachment and detach-

ment points. Payments to cover these losses are termed the default leg payments. On

the other hand, the tranche holder receives from the purchaser of protection premiums

proportional to the un-defaulted principal at any given moment. These payments are

termed the premium leg payments. The value of the tranche is then the difference

between the expected discounted cash flows of the premium and default legs.

To make this more precise, suppose the time horizon of the tranche is split into

k discrete periods starting from the time of valuation, t = 0, until the maturity of

the CDO, T = tn, and that default can occur in any one of these time intervals. The

expected discounted value of the default leg cash flows is:

D0,j = E

[
n∑

k=1

B0,tk

(
Ltr

tk,j − Ltr
tk−1,j

)]
=

n∑

k=1

B0,tk

[
E

(
Ltr

tk

)− E
(
Ltr

tk−1

)]
. (32)

Here, B0,t price at date 0 of a pure discount bond paying $1 for sure at date t.

Assume the premium leg of the tranche is paid discretely in each of the m periods.

If the tranche premium is ω, then the premium leg is given by:

P0,j = E

[
ω

∑

k∈m

B0,tk

(
A2,j − A1,j − Ltr

tk

)
]

= ω
∑

k∈m

B0,tk

[
A2,j − A1,j − E

(
Ltr

tk

)]
.

(33)

Knowing the expected losses on a tranche at the different future dates is, therefore,

enough to value the tranche. The expected losses may be estimated by simulating

the dynamic loss process of the pool, (17), and then taking expectations of (31). In

our analysis, we assume a constant recovery rate of 40%.

3.2 Market Calibration

In the market, for standard tradable synthetic structures, quotes are available for

each tranche within a structure. There are also multiple maturities, or tenors. As

our model is a dynamic one, it can be used to fit consistently prices or spreads for

tranches of different tenors.
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The first step in calibrating the model is to infer the q0,j from Credit Default

Swap (CDS) spreads at date 0. In our pricing, we assume that the pool consists of

identical borrowers and hence we wish to extract a single set of default probabilities.

We could proceed by extracting default probabilities for each of the individual names

in the pool using CDS spread quotes for those same names and then take a value-

weighted average taken to obtain a single set of probabilities. An alternative is to

regard the index spreads i.e., the spreads for a non-tranched vanilla synthetic CDO as

comparable to the spreads on an individual name CDS contract and then to infer the

default probabilities using pricing formula for a single-name CDS. In what follows,

we take the latter approach.

To see how one may extract default probabilities from CDS spreads, suppose

that, conditional on information at date 0, we suppose as before that q0,t denotes the

probability that an individual obligor defaults in period t having survived until t− 1.

The probability that the obligor defaults at some time between dates 0 and t is:

Q0,t = 1−
t∏

j=1

(1− q0,j) (34)

For a CDS contract with a notional value of unity, the fair spread on un-defaulted

notional denoted ζ satisfies:

ζ
t∑

j=1

(1−Q0,j) B0,j = (1− γ)
t∑

j=1

(Q0,j −Q0,j−1) B0,j . (35)

Implicitly, this equation depends on the q0,j. Given a set of CDS spreads, one may

infer the q0,j by minimizing the squared difference between the actual quotes and

the quotes implied by equation (35). In doing this, we assume that the default

probabilities q0,t are constant for dates t between the maturity dates of the synthetic

CDO contracts we ultimately wish to price, namely 5, 7 and 10-year maturities.

Given estimates of the q0,t, one may infer the parameters of the loss rate process

from the spreads on the synthetic CDO tranches. The parameters of the loss rate

process to be inferred are (i) the common factor weight ρ, (ii) the unobserved common

factor autoregressive parameters, φi, for i = 1, . . . , p, where p is the number of lags

and (iii) the parameters, if any, of the idiosyncratic distribution H denoted ν. (In

the case of a Gaussian, H is the standard normal distribution function and has no

parameters. In the case of other distributions we consider below, ν will include one

or more parameters.)

11



To infer the loss rate parameters, we evaluate the tranche spreads implied by a set

of parameters and then iterate using an optimization routine to minimize the sum of

squared differences between the observed and model-implied tranche spreads. These

differences are expressed in the quadratic objective function of the optimization as a

ratio to the observed spread.

Note that our approach of first extracting the q0,t ensures that the index spread

is precisely fitted. An alternate approach would be to fit the index spread as part of

the more general fitting of the loss rate parameters. This would give more flexibility

in the fitting procedure and improve the accuracy of the implied tranche spread.

3.3 Calibration of a Static Model

Before discussing the fit of our model to data, we present results for a static loss

distribution model similar to current market practice. Vasicek (1991) proposed a

simple closed form loss distribution for a pool of credit exposures. His loss distribution

is a function of a factor correlation parameter and the default probability over the

given horizon.

It is common practice to infer the default probabilities from the CDS index spread

assuming a constant hazard rate. The correlation parameter is then extracted from

spread data for a given tranche with a particular tenor. In theory, if the model were

correct, the same correlation parameter would accurately fit the prices of tranches

with different levels of subordination. When correlations are extracted from spreads

on different tranches, however, one generally finds a “correlation smile”, with the

correlation parameter appearing higher for junior and senior tranches and lower for

mezzanine tranches.

Figure 1 shows the correlation smile implied by 5 and 7-year tenor CDX tranche

spreads, averaged over weekly observations from June 2006 until December 2007,

based on a simple Vasicek loss distribution. This plot shows that to fit each market

quote perfectly requires that one associate different factor correlations with the dif-

ferent tranches. Based on this, one may argue that a more richly parameterized loss

distribution that can fit multiple tranches in a consistent fashion is called for.

The first row of Panels A and B of Table 1 show the average absolute and percent-

age differences between the implied and observed CDX spreads for different subordi-

nation levels or tranches. The implied spreads are obtained by the factor correlation
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that optimizes the spread fit for the different tranches. The averages are accumula-

tion of all dates and maturities (5, 7, and 10-year) at the given subordination. The

spreads implied by the model fit poorly. This again points to the need for a model

that can be calibrated across a whole structure or even across multiple maturities.

3.4 Calibration of Dynamic Models

Up to now, we have presented our dynamic loan loss distribution in general terms

without specifying the distribution, H, for the idiosyncratic shocks, εi,t. In what

follows, we shall calibrate our model for three different H distributions.

One might think that H would have little influence on aggregate losses as idio-

syncratic randomness should be diversified away in a large portfolio. However, the

form of H affects the model in two ways. First, the loss rate distribution depends on

default cut-off points or quantiles c0,t which are obtained from the q0,t by inverting

the convolution of H and the Gaussian common factor.

Second, H determines the relation between the “transformed loss rate”, θ̃t, that

follows a given autocorrelated stochastic process in our framework, and actual losses,

θt, in that

θt = H(θ̃t). (36)

We employ three specifications of H, namely:

1. Using a standard Gaussian random variable for the idiosyncratic shock, εi,t,

H is then a standard normal distribution. The default driver, Zi,t is then the

convolution of two Gaussians which is simply another Gaussian. By definition

a standard normal random variable has unit variance. Hence, no scaling of the

idiosyncratic term is required to enforce this condition.

2. If the idiosyncratic shocks follow a student-t distribution, then the default driver

Zi,t will exhibit more fat-tailed behavior. The distribution of Zi,t will be the

convolution of a Gaussian distribution N (0, ρ) and of a random variable which

once re-scaled has a t-distribution with ν degrees of freedom. By “re-scaled”,

we mean that the random variable is scaled by
√

1− ρ
√

(ν − 2)/ν so that it

has a variance of 1− ρ. (Note here that the variance of a random variable that

is t-distributed with ν degrees of freedom is ν/(ν − 2).)
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In this case, the inverse of the G distribution does not have a closed form

expression so a numerical solution must be obtained. We employed a root

finding algorithm to perform the inversion.

Note that with this H distribution, an additional parameter, namely ν, is avail-

able for fitting the tranche spreads.

3. Finally, we consider a case in which H is a Gaussian mixture. In this case, the

idiosyncratic shock may be viewed a random draw from one of two different

Gaussian distributions. Like the Student-t distribution, this form of H implies

fat tailed behavior for the default driver Zi,t.

We assume that εi,t has the following distribution:

H (εi,t) = λΦ

(
εi,t

σε

)
+ (1− λ) Φ

(
εi,t

σmσε

)
. (37)

If σε equals unity, this distribution would have the variance:

E
(
ε2
i,t

)
= λ + (1− λ) σ2

m . (38)

Hence, we must set:

σε =
√

λ + (1− λ) σ2
m . (39)

Then G is given by the convolution of N (0, ρ) and of a Gaussian mixture random

variable scaled by
√

1− ρ. Again, as with the t distribution, to find G−1,

we use a numerical inversion procedure. With this H distribution, additional

parameter λ and σm are available for improving the fit of the tranche spreads.

4 Results

We calibrate the model for CDX tranches with 5, 7 and 10-year tenors and with

attachment-detachment points 0-3%, 3-7%, 7-10%, 10-15%, and 15-30% and the CDX

index spread. Our sample includes observations of the contracts weekly from June

2006 to December 2007.

We fit the data for several different model specifications. Specifically, we fit

six specifications with different H functions (idiosyncratic shock distributions): (i)

Gaussian, (ii) Student’s t, and (iii) Gaussian mixture, and with different numbers of

factor lags: (a) one and (b) two lags.
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Table 1 summarizes the accuracy of the fits by reporting the average absolute

differences in basis points and the average absolute percentage differences between

the actual and model-implied spreads for the five different attachment-detachment

point ranges. (The model fit is performed recursively in that it matches the index

spread perfectly before we choose model parameters to fit the other spreads. So we

do not report accuracy measures for the index spreads.)

The model fits the spreads with reasonable accuracy for the full range of tenors and

attachment-detachment points. The 0-3% spreads are least well fitted as measured

by absolute differences but this clearly reflects the substantial size of these spreads

and the fit as measured by percentage differences is reasonably accurate.

The best specification appears to be the mixture model with one factor lag. The

absolute errors and the percentage errors all seem reasonable in this case.

Figure 2 provides graphical summaries of the accuracy of the fit in the case of the

one-lag, normal mixture model. Each of the six panels in the figure shows the actual

spreads for three different tenors (5, 7 and 10-years) with solid lines, and the spreads

implied by the fitted model with dotted lines.

In the case of the index spread, the solid and dotted lines coincide for the reasons

already explained and hence only a single line for each of the three tenors is visible.

In the case of the other attachment-detachment point ranges, one may see that the

dotted line tracks the solid lines quite well throughout the sample period.

Figure 3 shows, for each week in the sample period, the model parameters that

the algorithm has come up with in fitting the tranche spreads. The four parameters

in question are (i) the factor correlation, ρ, (ii) the common factor autoregressive

parameter, φ, (iii) the weight between the two Gaussian distributions in the mixture,

λ, and (iv) the volatility of the second distribution in the mixture, σm.

An interesting point to note is the fact that the correlation parameter, ρ is highly

stable through the sample period, ranging from 60 to 70 percent for almost all the

dates. This is in contrast to what one finds in the case of the simple static, single risk

factor model. On the other hand, the autoregressive factor parameter moves about

considerably over the sample period, ranging from negative values up to 80 percent

at the end of the sample period.

The intuition this suggests is that, in valuing CDX tranches, market participants

frequently revise not the correlation between individual defaults but the degree to
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which they think credit cycle shocks are persistent. A high level of the autoregressive

parameter implies that when a shock occurs, it’s impact is felt for multiple periods

and so will affect cumulative pool losses to a greater degree.

5 Conclusion

This paper generalizes in a simple and transparent manner the most standard and

widely employed valuation model for synthetic CDOs in such a way that it consistently

prices tranche spreads for multiple subordination levels and maturities. The resulting

model is fully dynamic and hence may be used for hedging portfolios of synthetic CDO

exposures over time in a rigorous fashion.

Our model sheds interesting light on the loss distribution implicit in market

spreads and how this changes over time. It is commonly thought that market values

are driven by fluctuations in the market’s perceptions of default correlations. In our

richer parameterization, correlation parameters appear relatively stable over time

while the implied parameter that measures the persistence of credit shocks moves

around substantially as tranche spreads evolve over time.

Future research ideas suggested by our study include (i) generalizations in which

factors driving defaults display GARCH-type properties, and (ii) simultaneous em-

pirical investigation of tranche pricing and of the stochastic evolution of individual

CDS spreads.
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Appendix

A Unit Variance Scaling

First, using lag operators, setting σ = 1, equation (5), can be written as:

XtB (L) = ηt , (A1)

for a lag operator B(L) defined as:

B (L) = 1− φ1L− · · · − φpL
p. (A2)

The lag polynomial can be factorized into the form:

B (L) = (1− λ1L) (1− λ2L) . . . (1− λpL) . (A3)

We assume that the roots of the lag operator, λi lie outside the unit circle. This

implies that the lag operator can be inverted and the factor process may therefore be

written as a weighted sum of lagged innovations:

Xt = B (L)−1 ηt . (A4)

To derive the coefficients on lagged innovations, start by expanding the lag polynomial

through partial fractions to obtain:

Xt =
c1

1− λ1L
ηt + . . . +

cp

1− λpL
ηt (A5)

= c1

∞∑
j=0

λj
1ηt−j + . . . + cp

∞∑
j=0

λj
pηt−j (A6)

=

p∑
i=1

ci

∞∑
j=0

λj
iηt−j , (A7)

where:

ci =
λp−1

i

(λi − λ1) . . . (λi − λi−1) (λi − λi+1) . . . (λi − λp)
. (A8)

To obtain the λi’s, note that, by definition, the eigenvalues of the matrix:

F ≡




φ1 φ2 · · · φp−1 φp

1 0 · · · 0 0

0 1 · · · 0 0
...

...
...

... 0

0 0 · · · 1 0




(A9)
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are the solutions of the polynomial:

zp − φ1z
p−1 − · · · − φp−1z − φp = 0 . (A10)

Setting z = 1/λ, we obtain the

1− φ1λ− · · · − φp−1λ
p−1 − φpλ

p = 0 . (A11)

Hence, the λi in the factorization of the lag operator in equation (A3) are simply

the inverses of the eigenvalues of F . Our assumption above that the roots of the lag

operator lie outside the unit circle is equivalent to assuming that the eigenvalues of

F lie inside the unit circle.

Given the representation (A5), it is a straight forward step to calculate the un-

conditional variance of the process. This is:

Variance (Xt) = E




(
p∑

i=1

ci

∞∑
j=0

λj
iηt−j

)2

 =

∞∑
j=0

(
p∑

j=1

ciλ
j
i

)2

, (A12)

where we have reversed the order of the summations and used the temporal indepen-

dence of the shocks.

To ensure that Xt has a unit unconditional variance, each period, one may set σ

to the inverse of
√

Variance (Xt) to obtain:

Xt =

p∑
i=1

φiXt−i +
1√∑∞

j=0

(∑p
j=1 ciλ

j
i

)2
ηt =

p∑
i=1

φiXt−i + σηt . (A13)
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Figure 1: Plot of the average implied correlation estimates for different subordination

levels for CDX for 5 and 7-year maturities. The implied correlation estimates are

obtained using a static model over the period of June 2006 to December 2007.
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Figure 2: Plots of market and model implied tranche spreads for the CDX tranches

for 5, 7 and 10-year maturities over the period of June 2006 to December 2007. A

Gaussian mixture distribution was assumed for the idiosyncratic distribution H with

one autoregressive lag in the common factor. Each panel shows the spreads for all

maturities at a particular tranche subordination. The solid lines are the market

quoted spreads. The dashed lines are the model implied spreads.
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Table 1: Absolute and percentage differences of market to model implied tranche

spreads for the CDX synthetic CDO over the period of June 2006 to December 2007.

The first row of panels A and B present the results for the static model with a Gaussian

distribution. The other rows present the results for the dynamic model with different

distributions for the idiosyncratic distribution H: Normal, Student-t and Gaussian

mixture distribution. For each model and distribution, the results for one and two

autoregressive lags are presented. Each entry in the table is the accumulation of all

dates and maturities at the given subordination. Thus, each entry is the average of

the 5, 7, and 10-year maturities for all data points at the given level of protection.

Subordination 0% - 3% 3% - 7% 7% - 10% 10% - 15% 15% - 30%

Panel A: Absolute Differences (bp)

Static 427.16 119.63 55.97 23.30 10.03
Normal 1 Lag 299.67 14.43 12.23 6.48 11.53
Normal 2 Lags 288.74 14.32 12.30 6.47 11.55
Student-t 1 Lag 428.56 19.29 8.85 4.89 3.90
Student-t 2 Lags 381.88 19.77 9.63 3.28 4.44
Mixed 1 Lag 184.33 16.89 6.59 5.72 2.52
Mixed 2 Lags 225.99 19.58 7.74 7.24 2.94

Panel B: Percentage Differences (%)

Static 9.48 41.83 39.39 50.21 71.81
Normal 1 Lag 7.40 4.33 11.61 20.04 69.52
Normal 2 Lags 7.13 4.34 11.71 19.87 69.57
Student-t 1 Lag 9.51 5.40 11.33 10.67 30.93
Student-t 2 Lags 8.66 5.13 11.83 7.79 32.70
Mixed 1 Lag 4.34 4.68 6.26 14.85 13.06
Mixed 2 Lags 5.05 5.53 6.63 15.97 13.55
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Figure 3: Parameter estimations using a Gaussian Mixture H distribution and one

autoregressive lag in the common factor. The data calibrated to is the CDX tranches

for 5, 7 and 10-year maturities over the period of June 2006 to December 2007. The

top panel shows the parameters independent of the choice of idiosyncratic distribution

H, so the factor correlation, ρ, and the common factor autoregressive coefficient, φ.

The bottom panel shows a time-series of the parameters specific to a Gaussian mixture

model as choice for H. These are the weight between the two Gaussian distributions,

λ, and the volatility of the second distribution, σm.
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